Infiniium

9000A Programmer'’s
Reference

- Agilent Technologies

Programmer's Reference

Publication Number 54904-97002
July 2010

This reference applies directly to software revision code 2.50 and later.

© Copyright Agilent Technologies 2010
All Rights Reserved.

9000A Series Infiniium
Oscilloscopes

In This Book

This book is your guide to programming the Infiniium 9000A Series Oscilloscopes.

Chapters 1 through 5 give you an introduction to programming the oscilloscopes,
along with necessary conceptual information. These chapters describe basic program
communications, interface, syntax, data types, and status reporting.

Chapter 6 shows example BASIC and C programs, and describes chunks of one
program to show you some typical applications. The BASIC and C example programs
are also shipped on a disk with the oscilloscope.

Chapters 7 through 25 describe the commands used to program the oscilloscopes.
Each chapter describes the set of commands that belong to an individual subsystem,
and explains the function of each command.

Chapter 33 describes error messages.

Contents

1 Introduction to Programming
Communicating with the Oscilloscope 1-3
Output Command 1-4
Device Address 1-4
Instructions 1-4
Instruction Header 1-4
White Space (Separator) 1-5
Braces 1-5
Ellipsis 1-5
Square Brackets 1-5
Command and Query Sources 1-5
Program Data 1-6
Header Types 1-7
Duplicate Mnemonics 1-9
Query Headers 1-10
Program Header Options 1-11
Character Program Data 1-11
Numeric Program Data 1-12
Embedded Strings 1-13
Program Message Terminator 1-13
Common Commands within a Subsystem 1-14
Selecting Multiple Subsystems 1-14
Programming Getting Started 1-14
Initialization 1-15
Example Program using HP Basic 1-16
Using the DIGITIZE Command 1-17
Receiving Information from the Oscilloscope 1-19
String Variable Example 1-20
Numeric Variable Example 1-20
Definite-Length Block Response Data 1-21
Multiple Queries 1-22
Oscilloscope Status 1-22

2 Connectivity
LAN Interface Connector 2-3
GPIB Interface Connector 2-3
Default Startup Conditions 2-4
Interface Capabilities 2-5
GPIB Command and Data Concepts 2-6
Communicating Over the GPIB Interface 2-7
Communicating Over the LAN Interface 2-8
Communicating via Telnet and Sockets 2-9
Bus Commands 2-11

3 Message Communication and System Functions

Contents-1

Contents

Protocols 3-3

Status Reporting

Status Reporting Data Structures 4-5
Status Byte Register 4-8

Service Request Enable Register 4-10
Message Event Register 4-10

Trigger Event Register 4-10

Standard Event Status Register 4-11
Standard Event Status Enable Register 4-12
Operation Status Register 4-13
Operation Status Enable Register 4-14
Mask Test Event Register 4-15

Mask Test Event Enable Register 4-16
Acquisition Done Event Register 4-17
Process Done Event Register 4-17
Trigger Armed Event Register 4-17
Auto Trigger Event Register 4-17
Error Queue 4-18

Output Queue 4-18

Message Queue 4-19

Clearing Registers and Queues 4-19

Remote Acquisition Synchronization
Introduction 5-2

Programming Flow 5-2

Setting Up the Oscilloscope 5-2

Acquiring a Waveform 5-2

Retrieving Results 5-3

Acquisition Synchronization 5-3

Single Shot Device Under Test (DUT) 5-5
Averaging Acquisition Synchronization 5-6

Programming Conventions

Truncation Rule 6-3

The Command Tree 6-4

Infinity Representation 6-12

Sequential and Overlapped Commands 6-12
Response Generation 6-12

EOl 6-12

Sample Programs

Sample Program Structure 7-3
Sample C Programs 7-4

Listings of the Sample Programs 7-14
gpibdecl.h Sample Header 7-15

Contents-2

10

learnstr.c Sample Program 7-17
sicl_10.c Sample Program 7-21
natl_10.c Sample Program 7-26
init.bas Sample Program 7-30
Irn_str.bas Sample Program 7-38

Acquire Commands
AVERage 8-3
AVERage:COUNt 8-4
COMPIlete 8-5
COMPIlete:STATe 8-7
INTerpolate 8-8
MODE 8-9
POINts:ANALog 8-11
POINts:DIGital? 8-15
POINts:AUTO 8-16
SEGMented:COUNt 8-17
SEGMented:INDex 8-18
SEGMented: TTAGs 8-19

SRATe:ANALog (Analog Sample RATe) 8-20

SRATe Sample Rate Tables

SRATe:DIGital (Digital Channels Sample RATe) 8-23
SRATe:ANALog:AUTO 8-25
SRATe:DIGital:AUTO 8-26

Bus Commands
B1:TYPE 9-3
BIT<M> 9-4
BITS 9-5

CLEar 9-6
CLOCk 9-7
:CLOCk:SLOPe 9-8
DISPlay 9-9
LABel 9-10
READout 9-11

Channel Commands
BWLimit 10-4
COMMonmode 10-5
DIFFerential 10-6
DIFFerential:SKEW 10-7
DISPlay 10-8
DISPlay:AUTO 10-9
DISPlay:OFFSet 10-11
DISPlay:RANGe 10-12
DISPlay:SCALe 10-14

Contents

Contents-3

11

12

Contents

INPut 10-16

ISIM:APPLYy 10-17
ISIM:BANDwidth 10-19
ISIM:BWLimit 10-21
ISIM:CONVolve 10-23
ISIM:DEConvolve 10-24
ISIM:DELay 10-25
ISIM:SPAN 10-27
ISIM:STATe 10-29

LABel 10-31

OFFSet 10-32

PROBe 10-33
PROBe:ATTenuation 10-35
PROBe:COUPIling 10-36
PROBe:EADapter 10-37
PROBe:ECOupling 10-39
PROBe:EXTernal 10-41
PROBe:EXTernal:GAIN 10-42
PROBe:EXTernal:OFFSet 10-44
PROBe:EXTernal:UNITs 10-46
PROBe:GAIN 10-48
PROBe:HEAD:ADD 10-49
PROBe:HEAD:DELete ALL 10-50
PROBe:HEAD:SELect 10-51
PROBe:ID? 10-52
PROBe:SKEW 10-53
PROBe:STYPe 10-54
RANGe 10-55

SCALe 10-56

UNITs 10-57

Calibration Commands
Oscilloscope Calibration 11-3
Probe Calibration 11-4

Calibration Commands 11-5

OUTPut 11-6
SKEW 11-7
STATus? 11-8

Common Commands

*CLS (Clear Status) 12-4

*ESE (Event Status Enable) 12-5
*ESR? (Event Status Register) 12-7
*IDN? (Identification Number) 12-9

Contents-4

13

14

15

*LRN? (Learn) 12-10

*OPC (Operation Complete) 12-12
*OPT? (Option) 12-13

*PSC (Power-on Status Clear) 12-14
*RCL (Recall) 12-15

*RST (Reset) 12-16

*SAV (Save) 12-17

*SRE (Service Request Enable) 12-18

*STB? (Status Byte) 12-20
*TRG (Trigger) 12-22
*TST? (Test) 12-23

*WAI (Wait) 12-24

Digital Commands
DISPlay 13-3
LABel 13-4

SIZE 13-5
THReshold 13-6

Disk Commands
CDIRectory 14-3

COPY 14-4

DELete 14-5

DIRectory? 14-6

LOAD 14-7

MDIRectory 14-8

PWD? 14-9

SAVE:IMAGe 14-10
SAVE:JITTer 14-11
SAVE:LISTing 14-12
SAVE:MEASurements 14-13
SAVE:SETup 14-14
SAVE:WAVeform 14-15
CSV and TSV Header Format 14-17
BIN Header Format 14-20
SEGMented 14-36

Display Commands
CGRade 15-3
CGRade:LEVels? 15-5
COLumn 15-7
CONNect 15-8
DATA? 15-9
GRATicule 15-10
LABel 15-12

LINE 15-13

Contents

Contents-5

16

17

Contents

PERSistence 15-14
ROW 15-15
SCOLor 15-16
STRing 15-19
TAB 15-20

TEXT 15-21

Function Commands
FUNCtionckN>? 16-4
ABSolute 16-5

ADD 16-6

AVERage 16-7
COMMonmode 16-9
DIFF (Differentiate) 16-10
DISPlay 16-12

DIVide 16-13
FFT:FREQuency 16-14
FFT:REFerence 16-15
FFT:RESolution? 16-16
FFT:WINDow 16-17
FFTMagnitude 16-19
FFTPhase 16-21
HIGHpass 16-23
HORizontal 16-24
HORizontal:POSition 16-25
HORizontal:RANGe 16-26
INTegrate 16-27
INVert 16-29
LOWPass 16-31
MAGNIify 16-32
MAXimum 16-34
MINimum 16-36
MULTiply 16-38
OFFSet 16-40

RANGe 16-41
SMOoth 16-42

SQRT 16-44

SQUare 16-45
SUBTract 16-46
VERSus 16-48
VERTical 16-50
VERTical:OFFSet 16-51
VERTical:RANGe 16-52

Hardcopy Commands
AREA 17-3

Contents-6

18

19

20

21

DPRinter 17-4
FACTors 17-6
IMAGe 17-7
PRINters? 17-8

Histogram Commands
AXIS 18-4

MODE 18-5
SCALe:SIZE 18-6
WINDow:DEFault 18-7
WINDow:SOURce 18-8
WINDow:LLIMit 18-10
WINDow:RLIMit 18-11
WINDow:BLIMit 18-12
WINDow:TLIMit 18-13

InfiniiScan (ISCan) Commands
DELay 19-3
MEASurement:FAIL 19-4
MEASurement:LLIMit 19-5
MEASurement 19-6
MEASurement:ULIMit 19-7
MODE 19-8
NONMonotonic:EDGE 19-9
NONMonotonic:HYSTeresis 19-10
NONMonotonic:SOURce 19-11
RUNT:HYSTeresis 19-12
RUNT:LLEVel 19-13
RUNT:SOURce 19-14
RUNT:ULEVel 19-15
SERial:PATTern 19-16
SERial:SOURce 19-17
ZONE<N>:MODE 19-18
ZONE<N>:PLACement 19-19
ZONE:SOURce 19-20
ZONE<N>:STATe 19-21

Limit Test Commands
FAIL 20-3

LLIMit 20-4
MEASurement 20-5
RESults? 20-6

TEST 20-7

ULIMit 20-8

Marker Commands

Contents

Contents-7

22

Contents

CURSor? 21-3
MODE 21-4
TSTArt 21-5
TSTOp 21-7
VSTArt 21-9
TVSTOp 21-10
X1Position 21-12
X2Position 21-13
X1Y1source 21-14
X2Y2source 21-16
XDELta? 21-18
Y1Position 21-19
Y?2Position 21-20
YDELta? 21-21

Mask Test Commands
ALIGn 22-4

AlignFIT 22-5
AMASK:CREate 22-7
AMASK:SOURce 22-8
AMASK:SAVE | STORe 22-10
AMASK:UNITs 22-11
AMASkK:XDELta 22-12
AMASK:YDELta 22-14
AUTO 22-16

AVERage 22-17
AVERage:COUNt 22-18
COUNTt:FAILures? 22-19
COUNt:FUI? 22-20
COUNt:FWAVeforms? 22-21
COUNt:UI? 22-22
COUNt:WAVeforms? 22-23
DELete 22-24

ENABle 22-25

FOLDing 22-26
FOLDing:BITS 22-27
HAMPIlitude 22-28
IMPedance 22-29

INVert 22-31

LAMPlitude 22-32

LOAD 22-33

NREGions? 22-34
PROBe:IMPedance? 22-35
RUMode 22-36
RUMode:SOFailure 22-38

Contents-8

23

SCALe:BIND 22-39
SCALe:X1 22-40
SCALe:XDELta 22-41
SCALe:Y1 22-42
SCALe:Y2 22-43
SOURce 22-44
STARt|STOP 22-46
STIMe 22-47

TITLe? 22-48
TRIGger:SOURce 22-49

Measure Commands
AREA 23-9

BWIDth 23-10

CDRRATE 23-11
CGRade:CROSsing 23-13
CGRade:DCDistortion 23-14
CGRade:EHEight 23-15
CGRade:EWIDth 23-17
CGRade:EWINdow 23-19
CGRade:JITTer 23-21
CGRade:QFACtor 23-22
CLEar 23-23

CLOCk 23-24
CLOCk:METHod 23-25
CLOCK:METHod:DEEMphasis 23-28
CLOCK:VERTical 23-29
CLOCk:VERTical:OFFSet 23-30
CLOCk:VERTical:RANGe 23-31
CROSsing 23-32
CTCDutycycle 23-33
CTClitter 23-35
CTCNwidth 23-37
CTCPwidth 23-39
DATarate 23-41
DELTatime 23-43
DELTatime:DEFine 23-45
DUTYcycle 23-47
FALLtime 23-49
FFT:DFRequency 23-51
FFT:DMAGnitude 23-53
FFT:FREQuency 23-55
FFT:MAGNitude 23-57
FFT:PEAK1 23-59
FFT:PEAK2 23-60

Contents

Contents-9

Contents

FFT:THReshold 23-61

FREQuency 23-62

HISTogram:HITS 23-64
HISTogram:M1S 23-66
HISTogram:M2S 23-68
HISTogram:M3S 23-70
HISTogram:MAX? 23-72
HISTogram:MEAN? 23-73
HISTogram:MEDian? 23-74
HISTogram:MIN? 23-75
HISTogram:PEAK? 23-76
HISTogram:PP? 23-77
HISTogram:STDDev? 23-78
HOLDtime 23-79

JITTer:HISTogram 23-82
JITTer-MEASurement 23-83
JITTer:SPECtrum 23-84
JITTer:SPECtrum:HORIizontal 23-85
JITTer:SPECtrum:HORIizontal:POSition 23-86
JITTer:SPECtrum:HORizontal:RANGe 23-88
JITTer:SPECtrum:VERTical 23-89
JITTer:SPECtrum:VERTical:OFFSet 23-90
JITTer:SPECtrum:VERTical:RANGe 23-91
JITTer:SPECtrum:WINDow 23-92
JITTer:STATistics 23-93
JITTer:TRENd 23-94
JITTer:TRENd:SMOoth 23-95
JITTer:TRENd:SMOoth:POINts 23-96
JITTer:TRENd:VERTical 23-97
JITTer:TRENd:VERTical:OFFSet 23-98
JITTer:TRENd:VERTIical:RANGe 23-99
NAME 23-100

NClitter 23-101

NPERiod 23-103

23-104

NPULses 23-105

NWIDth 23-106

OVERshoot 23-108

PERiod 23-110

PHASe 23-113

PPULses 23-115

PREShoot 23-116

PWIDth 23-118
QUAL.ifier<M>:CONDition 23-120
QUALIifier<M>:SOURce 23-121

Contents-10

Contents

QUALIfier<M>:STATe 23-122
RESults? 23-123

RISetime 23-126
RJDJ:ALL? 23-128
RJDJ:BANDwidth 23-130
RIJDJ:BER 23-131
RIJDJ.EDGE 23-133
RJDJ:INTerpolate 23-134
RJDJ:PLENgth 23-135
RJDJ:SOURce 23-137
RIJDJ:STATe 23-139
RJDJ:TIJRIDJ? 23-140
RJIJDJ:UNITs 23-141
SCRatch 23-142

SENDvalid 23-143
SETuptime 23-144
SLEWrate 23-147

SOURce 23-149

STATistics 23-151

TEDGe 23-152
THResholds:ABSolute 23-154
THResholds:HYSTeresis 23-156
THResholds:METHod 23-158
THResholds:PERCent 23-160
THResholds: TOPBase:METHod 23-162
THResholds: TOPBase:ABSolute 23-164
TIEClock2 23-166

TIEData 23-169
TIEFilter:STARt 23-172
TIEFilter:STATe 23-173
TIEFilter:STOP 23-174
TIEFilter:TYPE 23-175
TMAX 23-176

TMIN 23-178

TVOLt 23-180

UlTouijitter 23-182
UNITinterval 23-183
VAMPIlitude 23-185
VAVerage 23-187

VBASe 23-189

VLOWer 23-191

VMAX 23-193

VMIDdle 23-195

VMIN 23-197

VPP 23-199

Contents-11

24

25

26

Contents

VRMS 23-201
VTIMe 23-204
VTOP 23-206
VUPPer 23-208
WINdow 23-210

Pod Commands
DISPlay 24-3
THReshold 24-4
PSKew 24-5

Root Level Commands

ADER? (Acquisition Done Event Register) 25-4
AER? (Arm Event Register) 25-5

ATER? (Auto Trigger Event Register) 25-6
AUToscale 25-7

AUToscale:CHANnels {ALL | DISPlayed} 25-8
AUToscale:PLACement {STACk | SEParate | OVERlay} 25-9
AUToscale:VERTical 25-10

BEEP 25-11

BLANK 25-12

CDISplay 25-13

DIGitize 25-14

DISable DIGital 25-16

ENABIe DIGital 25-17

MTEE 25-18

MTER? 25-19

MODel? 25-20

OPEE 25-21

OPER? 25-22

OVLRegister? 25-23

PDER? (Processing Done Event Register) 25-24
PRINt 25-25

RECall:SETup 25-26

RUN 25-27

SERial (Serial Number) 25-28

SINGle 25-29

STATus? 25-30

STOP 25-32

STOReJITTer 25-33

STORe:SETup 25-34

STORe:WAVeform 25-35

TER? (Trigger Event Register) 25-36
VIEW 25-37

Self-Test Commands

Contents-12

27

28

29

CANCel 26-3
SCOPETEST 26-4

System Commands
DATE 27-3
DEBug 27-4
DSP 27-6
ERRor? 27-7
HEADer 27-8
LOCK 27-10
LONGform 27-11
PRESet 27-13
SETup 27-14
TIME 27-16

Time Base Commands
POSition 28-3

RANGe 28-4
REFClock 28-5
REFerence 28-6
ROLL:ENABLE 28-7
SCALe 28-8

VIEW 28-9
WINDow:DELay 28-10
WINDow:POSition 28-12
WINDow:RANGe 28-13
WINDow:SCALe 28-14

Trigger Commands

Organization of Trigger Modes and Commands 29-5

Summary of Trigger Modes and Commands 29-7

Trigger Modes 29-10
AND:ENABIle 29-12
AND:SOURce 29-13
HOLDoff 29-14
HOLDoff:MAX 29-15
HOLDoff:MIN 29-16
HOLDoff:MODe 29-17
HTHReshold 29-18
HYSTeresis 29-19
LEVel 29-20
LTHReshold 29-21
SWEep 29-22

Contents

Contents-13

Contents

Trigger Mode-Specific Commands

COMM:BWIDth 29-24
COMM:ENCode 29-25
COMM:PATTern 29-26
COMM:POLarity 29-27
COMM:SOURce 29-28
DELay:ARM:SOURce 29-29
DELay:ARM:SLOPe 29-30
DELay:EDELay:COUNt 29-31
DELay:EDELay:SOURce 29-32
DELay:EDELay:SLOPe 29-33
DELay:MODE 29-34
DELay:TDELay:TIME 29-35
DELay:TRIGger:SOURce 29-36
DELay:TRIGger:SLOPe 29-37
EDGE:COUPling 29-38
EDGE:SLOPe 29-39
EDGE:SOURce 29-40
GLITch:POLarity 29-41
GLITch:SOURce 29-42
GLITch:WIDTh 29-43
PATTern:CONDition 29-44
PATTern:LOGic 29-45
PWIDth:DIRection 29-46
PWIDth:POLarity 29-47
PWIDth:SOURce 29-48
PWIDth:TPQint 29-49
PWIDth:WIDTh 29-50
RUNT:POLarity 29-51
RUNT:QUALIfied 29-52
RUNT:SOURce 29-53
RUNT:TIME 29-54
SHOLd:CSOurce 29-55
SHOLd:CSOurce:EDGE 29-56
SHOLd:DSOurce 29-57
SHOLd:HoldTIMe (HTIMe) 29-58
SHOLd:MODE 29-59
SHOLd:SetupTIMe 29-60
STATe:CLOCk 29-61
STATe:LOGic 29-62
STATe:.LTYPe 29-63
STATe:SLOPe 29-64
TIMeout:CONDition 29-65
TIMeout:SOURce 29-66
TIMeout: TIME 29-67

29-23

Contents-14

TRANSsition:DIRection 29-68
TRANSition:SOURce 29-69
TRANSsition:TIME 29-70
TRANSsition: TYPE 29-71
TV:LINE 29-72
TV:MODE 29-73
TV:POLarity 29-74
TV:SOURce 29-75
TV:STANdard 29-76
TV:UDTV:ENUMber 29-77
TV:UDTV:HSYNc 29-78
TV:UDTV:HTIMe 29-79
TV:UDTV:PGTHan 29-80
TV:UDTV:POLarity 29-81
WINDow:CONDition 29-82
WINDow:SOURce 29-83
WINDow:TIME 29-84
WINDow:TPQint 29-85

Advanced COMM Trigger Mode and Commands 29-86

COMM:BWIDth 29-88
COMM:ENCode 29-89
COMM:LEVel 29-90
COMM:PATTern 29-91
COMM:POLarity 29-92
COMM:SOURce 29-93

Advanced Pattern Trigger Mode and Commands 29-94

PATTern:CONDition 29-96
PATTern:LOGic 29-97
:PATTern:THReshold:LEVel 29-98
:PATTern:THReshold:POD<N> 29-99

Advanced State Trigger Mode and Commands 29-100
STATe:CLOCk 29-102

STATe:LOGic 29-103

STATe.LTYPe 29-104

STATe:SLOPe 29-105

:STATe:THReshold:LEVel 29-106

Advanced Delay By Event Mode and Commands 29-107
EDLY:ARM:SOURce 29-109

EDLY:ARM:SLOPe 29-110

EDLY:EVENt:DELay 29-111

Contents

Contents-15

Contents

EDLY:EVENt:SOURce 29-112
EDLY:EVENt:SLOPe 29-113
EDLY:TRIGger:SOURce 29-114
EDLY:TRIGger:SLOPe 29-115

Advanced Delay By Time Mode and Commands 29-116

TDLY:ARM:SOURce 29-118
TDLY:ARM:SLOPe 29-119
TDLY:DELay 29-120
TDLY:TRIGger:SOURce 29-121
TDLY:TRIGger:SLOPe 29-122

Advanced Standard TV Mode and Commands 29-123

STV:FIELd 29-125
STV:LINE 29-126
STV:SOURce 29-127
STV:SPOLarity 29-128

Advanced User Defined TV Mode and Commands 29-129

UDTV:ENUMber 29-132
UDTV:PGTHan 29-133
UDTV:POLarity 29-134
UDTV:SOURce 29-135

Advanced Trigger Violation Modes 29-136
VIOLation:MODE 29-137

Pulse Width Violation Mode and Commands 29-138

VIOLation:PWIDth:DIRection 29-140
VIOLation:PWIDth:POLarity 29-141
VIOLation:PWIDth:SOURce 29-142
VIOLation:PWIDth:WIDTh 29-143

Setup Violation Mode and Commands 29-144

VIOLation:SETup:MODE 29-147
VIOLation:SETup:SETup:SETup:CSOurce 29-148
VIOLation:SETup:SETup:CSOurce:LEVel 29-149
VIOLation:SETup:SETup:CSOurce:EDGE 29-150
VIOLation:SETup:SETup:DSOurce 29-151
VIOLation:SETup:SETup:DSOurce:HTHReshold 29-152
VIOLation:SETup:SETup:DSOurce:LTHReshold 29-153
VIOLation:SETup:SETup:TIME 29-154
VIOLation:SETup:HOLD:CSOurce 29-155
VIOLation:SETup:HOLD:CSOurce:LEVel 29-156

Contents-16

30

Contents

VIOLation:SETup:HOLD:CSOurce:EDGE 29-157
VIOLation:SETup:HOLD:DSOurce 29-158
VIOLation:SETup:HOLD:DSOurce:HTHReshold 29-159
VIOLation:SETup:HOLD:DSOurce:LTHReshold 29-160
VIOLation:SETup:HOLD:TIME 29-161
VIOLation:SETup:SHOLd:CSOurce 29-162
VIOLation:SETup:SHOLd:CSOurce:LEVel 29-163
VIOLation:SETup:SHOLd:CSOurce:EDGE 29-164
VIOLation:SETup:SHOLd:DSOurce 29-165
VIOLation:SETup:SHOLd:DSOurce:HTHReshold 29-166
VIOLation:SETup:SHOLd:DSOurce:LTHReshold 29-167
VIOLation:SETup:SHOLGd:SetupTIMe (STIMe) 29-168
VIOLation:SETup:SHOLd:HoldTIMe (HTIMe) 29-169

Transition Violation Mode 29-170

VIOLation:TRANsition 29-172
VIOLation:TRANsition:SOURce 29-173
VIOLation: TRANSsition:SOURce:HTHReshold 29-174
VIOLation:TRANSsition:SOURce:LTHReshold 29-175
VIOLation:TRANsition:TYPE 29-176

Waveform Commands
BANDpass? 30-6
BYTeorder 30-7
COMPlete? 30-8
COUNt? 30-9
COUPIling? 30-10
DATA? 30-11

DATA? Example for Digital Channels 30-28
FORMat 30-43

POINts? 30-46
PREamble 30-47
SEGMented:ALL 30-53
SEGMented:COUNt? 30-54
SEGMented: TTAG? 30-55
SEGMented:XLISt? 30-56
SOURce 30-57
STReaming 30-59
TYPE? 30-60

VIEW 30-61

XDISplay? 30-63
XINCrement? 30-64
XORigin? 30-65
XRANge? 30-66
XREFerence? 30-67

Contents-17

31

32

Contents

XUNits? 30-68
YDISplay? 30-69
YINCrement? 30-70
YORigin? 30-71
YRANge? 30-72
YREFerence? 30-73
YUNits? 30-74

Waveform Memory Commands
CLEar 31-3

DISPlay 31-4

LOAD 31-5

SAVE 31-6

XOFFset 31-7

XRANge 31-8

YOFFset 31-9

YRANge 31-10

Serial Data Equalization Commands
CTLequalizer:DISPlay 32-4
CTLequalizer:SOURce 32-5
CTLequalizer:DCGain 32-6

CTLequalizer:P1 32-7

CTLequalizer:P2 32-8

CTLequalizer:RATe 32-9
CTLequalizer:VERTical 32-10
CTLequalizer:VERTical:OFFSet 32-11
CTLequalizer:VERTical:RANGe 32-12
CTLequalizer:ZERo 32-13
SPRocessing:FFEQualizer:DISPlay 32-14
SPRocessing:FFEQualizer:SOURce 32-15
FFEQualizer:NPRecursor 32-16
SPRocessing:FFEQualizer:NTAPs 32-17
FFEequalizer:RATe 32-18
SPRocessing:FFEQualizer:TAP 32-19
SPRocessing:FFEQualizer: TAP:PLENgth 32-20
SPRocessing:FFEQualizer: TAP:WIDTh 32-21
SPRocessing:FFEQualizer; TAP:DELay 32-22
SPRocessing:FFEQualizer: TAP:AUTomatic 32-23
SPRocessing:FFEQualizer: TAP :BANDwidth 32-24
SPRocessing:FFEQualizer: TAP :BWMode 32-25
SPRocessing:FFEQualizer: TAP :TDELay 32-26
SPRocessing:FFEQualizer:TAP :TDMode 32-27
FFEQualizer:VERTical 32-28
FFEQualizer:VERTical:OFFSet 32-29
FFEQualizer:VERTical:RANGe 32-30

Contents-18

33

Contents

SPRocessing:DFEQualizer:STATe 32-31
SPRocessing:DFEQualizer:SOURce 32-32
SPRocessing:DFEQualizer:NTAPs 32-33
SPRocessing:DFEQualizer:TAP 32-34
SPRocessing:DFEQualizer: TAP:WIDTh 32-35
SPRocessing:DFEQualizer: TAP:DELay 32-36
SPRocessing:DFEQualizer: TAP:MAX 32-37
SPRocessing:DFEQualizer: TAP:MIN 32-38
SPRocessing:DFEQualizer: TAP:GAIN 32-39
SPRocessing:DFEQualizer: TAP:UTARget 32-40
SPRocessing:DFEQualizer: TAP:LTARget 32-41
SPRocessing:DFEQualizer: TAP:AUTomatic 32-42

Error Messages

Error Queue 33-3

Error Numbers 33-4

Command Error 33-5

Execution Error 33-6

Device- or Oscilloscope-Specific Error 33-7
Query Error 33-8

List of Error Messages 33-9

Contents-19

Contents

Contents-20

Introduction to Programming

Introduction to Programming

This chapter introduces the basics for remote programming of an oscilloscope.
The programming commands in this manual conform to the IEEE 488.2
Standard Digital Interface for Programmable Instrumentation. The
programming commands provide the means of remote control.

Basic operations that you can do with a computer and an oscilloscope include:

» Set up the oscilloscope.
» Make measurements.

» Get data (waveform, measurements, and configuration) from the
oscilloscope.

» Send information, such as waveforms and configurations, to the
oscilloscope.

You can accomplish other tasks by combining these functions.

Example Programs are Written in HP BASIC and C

The programming examples for individual commands in this manual are
written in HP BASIC and C.

1-2

Introduction to Programming
Communicating with the Oscilloscope

Communicating with the Oscilloscope

Computers communicate with the oscilloscope by sending and receiving messages
over a remote interface, such as a GPIB card (must order the N4865A GPIB-to-LAN
adapter) ora Local Area Network (LAN) card. Commands for programming normally
appear as ASCII character strings embedded inside the output statements of a “host”
language available on your computer. The input commands of the host language are
used to read responses from the oscilloscope.

For example, HP BASIC uses the OUTPUT statement for sending commands and
queries. After a query is sent, the response is usually read using the HP BASIC
ENTER statement. The ENTER statement passes the value across the bus to the
computer and places it in the designated variable.

For the GPIB interface, messages are placed on the bus using an output command and
passing the device address, program message, and a terminator. Passing the device
address ensures that the program message is sent to the correct GPIB interface and
GPIB device.

The following HP BASIC OUTPUT statement sends a command that sets the channel
1 scale value to 500 mV:

OUTPUT <device address> ;" :CHANNEL1:SCALE 500E-
3"<terminator>

The device address represents the address of the device being programmed. Each of
the other parts of the above statement are explained on the following pages.

Use the Suffix Multiplier Instead

Using "'mV"* or "'V" following the numeric voltage value in some commands
will cause Error 138 - Suffix not allowed. Instead, use the convention for the
suffix multiplier as described in chapter 3, ""Message Communication and
System Functions."

1-3

Introduction to Programming
Output Command

Output Command

The output command depends entirely on the programming language. Throughout
this book, HP BASIC and ANSI C are used in the examples of individual commands.
If you are using other languages, you will need to find the equivalents of HP BASIC
commands like OUTPUT, ENTER, and CLEAR, to convert the examples.

Device Address

The location where the device address must be specified depends on the programming
language you are using. In some languages, it may be specified outside the OUTPUT
command. In HP BASIC, it is always specified after the keyword, OUTPUT. The

examples in this manual assume that the oscilloscope and interface card are at GPIB
device address 707. When writing programs, the device address varies according to
how the bus is configured.

Instructions

Instructions, both commands and queries, normally appear as strings embedded in a
statement of your host language, such as BASIC, Pascal, or C. The only time a
parameter is not meant to be expressed as a string is when the instruction's syntax
definition specifies <block data>, such as HP BASIC’s "learnstring™ command. There
are only a few instructions that use block data.

Instructions are composed of two main parts:
» The header, which specifies the command or query to be sent.

e The program data, which provides additional information to clarify the meaning
of the instruction.

Instruction Header

The instruction header is one or more command mnemonics separated by colons (2).
They represent the operation to be performed by the oscilloscope. See the
“Programming Conventions” chapter for more information.

Queries are formed by adding a question mark (?) to the end of the header. Many
instructions can be used as either commands or queries, depending on whether or not
you include the question mark. The command and query forms of an instruction
usually have different program data. Many queries do not use any program data.

1-4

Introduction to Programming
White Space (Separator)

White Space (Separator)

White space is used to separate the instruction header from the program data. If the
instruction does not require any program data parameters, you do not need to include
any white space. In this manual, white space is defined as one or more spaces. ASCI|I
defines a space to be character 32 in decimal.

Braces

When several items are enclosed by braces, { }, only one of these elements may be
selected. Vertical line (]) indicates "or". For example, {ON | OFF} indicates that
only ON or OFF may be selected, not both.

Ellipsis

... Anellipsis (trailing dots) indicates that the preceding element may be repeated one
or more times.

Square Brackets

Items enclosed in square brackets, [], are optional.

Command and Query Sources

Many commands and queries require that a source be specified. Depending on the
command or query and the model number of Infiniium oscilloscope being used, some
of the sources are not available. The following is a list of some of the available
sources:

CHANnNell FUNCtionl WMEMoryl COMMonmode{1|2}

CHANnNel2 FUNCtion2 WMEMory2 DIFFerential{1|2}

CHANnNel3 FUNCtion3 WMEMory3 EQUalized

CHANnRel4 FUNCtion4 WMEMory4 DIGital0 - DIGitall5

CLOCk MTRend MSPectrum HISTogram

1-5

Introduction to Programming
Program Data

Program Data

Program data is used to clarify the meaning of the command or query. It provides
necessary information, such as whether a function should be on or off, or which
waveform is to be displayed. Each instruction's syntax definition shows the program
data and the values they accept.

When there is more than one data parameter, they are separated by commas (,). You
can add spaces around the commas to improve readability.

1-6

Introduction to Programming
Header Types

Header Types

There are three types of headers:
» Simple Command headers

e Compound Command headers
» Common Command headers

Simple Command Header

Simple command headers contain a single mnemonic. AUTOSCALE and DIGITIZE
are examples of simple command headers typically used in this oscilloscope. The
syntax is:

<program mnemonic><terminator>

or

OUTPUT 707; " : AUTOSCALE”

When program data must be included with the simple command header
(for example, :DIGITIZE CHANL1), white space is added to separate the data from
the header. The syntax is:

<program mnemonic><separator><program data><terminator>
or
OUTPUT 707;”:DIGITIZE CHANNEL1, FUNCTION2”

Compound Command Header

Compound command headers are a combination of two program mnemonics. The
first mnemonic selects the subsystem, and the second mnemonic selects the function
within that subsystem. The mnemonics within the compound message are separated
by colons. For example:

To execute a single function within a subsystem:
:<subsystem>:<function><separator><program data><terminator>

For example:

OUTPUT 707;” :CHANNELL : BWLIMIT ON”

Introduction to Programming
Header Types

Combining Commands in the Same Subsystem

To execute more than one command within the same subsystem, use a semi-colon (;)
to separate the commands:

:<subsystem>: <command><separator><data>; <command><separator>
<data><terminator>

For example:

:CHANNELL : INPUT DC; BWLIMIT ON

Common Command Header

Common command headers, such as clear status, control the IEEE 488.2 functions
within the oscilloscope. The syntax is:

*<command header><terminator>

No space or separator is allowed between the asterisk (*) and the command header.
*CLS is an example of a common command header.

1-8

Introduction to Programming
Duplicate Mnemonics

Duplicate Mnemonics

Identical function mnemonics can be used for more than one subsystem. For example,
you can use the function mnemonic RANGE to change both the vertical range and
horizontal range:

To set the vertical range of channel 1 to 0.4 volts full scale:
: CHANNEL1 : RANGE .4

To set the horizontal time base to 1 second full scale:

: TIMEBASE:RANGE 1

In these examples, CHANNELZ1 and TIMEBASE are subsystem selectors, and
determine the range type being modified.

1-9

Introduction to Programming
Query Headers

Query Headers

A command header immediately followed by a question mark (?) is a query. After

receiving a query, the oscilloscope interrogates the requested subsystem and places
the answer in its output queue. The answer remains in the output queue until it is read
or until another command is issued. When read, the answer is transmitted across the
bus to the designated listener (typically a computer). For example, the query:

: TIMEBASE : RANGE?
places the current time base setting in the output queue.

In HP BASIC, the computer input statement:

ENTER < device address > ;Range

passes the value across the bus to the computer and places it in the variable Range.

You can use queries to find out how the oscilloscope is currently configured and to
get results of measurements made by the oscilloscope.

For example, the command:

:MEASURE: RISETIME?

tells the oscilloscope to measure the rise time of your waveform and place the result
in the output queue.

The output queue must be read before the next program message is sent. For example,
when you send the query :MEASURE:RISETIME?, you must follow it with an input
statement. In HP BASIC, this is usually done with an ENTER statement immediately
followed by a variable name. This statement reads the result of the query and places
the result in a specified variable.

Handle Queries Properly

If you send another command or query before reading the result of a query,
the output buffer is cleared and the current response is lost. This also generates
aquery-interrupted error in the error queue. If you execute an input statement
before you send a query, it will cause the computer to wait indefinitely.

1-10

Introduction to Programming
Program Header Options

Program Header Options

You can send program headers using any combination of uppercase or lowercase
ASCII characters. Oscilloscope responses, however, are always returned in
uppercase.

You may send program command and query headers in either long form (complete
spelling), short form (abbreviated spelling), or any combination of long form and short
form. For example:

:TIMEBASE:DELAY 1E-6 is the long form.

:TIM:DEL 1E-6 is the short form.

Using Long Form or Short Form

Programswrittenin long formare easily read and are almost self-documenting.
The short form syntax conserves the amount of computer memory needed for
program storage and reduces 1/O activity.

The rules for the short form syntax are described in the chapter, “Programming
Conventions.”

Character Program Data

Character program data is used to convey parameter information as alpha or
alphanumeric strings. For example, the :TIMEBASE:REFERENCE command can
be set to left, center, or right. The character program data in this case may be LEFT,
CENTER, or RIGHT. The command :TIMEBASE:REFERENCE RIGHT sets the
time base reference to right.

The available mnemonics for character program data are always included with the
instruction's syntax definition. You may send either the long form of commands, or
the short form (if one exists). You may mix uppercase and lowercase letters freely.
When receiving responses, uppercase letters are used exclusively.

1-11

Introduction to Programming
Numeric Program Data

Numeric Program Data

Some command headers require program data to be expressed numerically. For
example, :TIMEBASE:RANGE requires the desired full-scale range to be expressed
numerically.

For numeric program data, you can use exponential notation or suffix multipliers to
indicate the numeric value. The following numbers are all equal:

28 = 0.28E2 = 280E-1 = 28000m = 0.028K = 28E-3K

When a syntax definition specifies that a number is an integer, it means that the number
should be whole. Any fractional part is ignored and truncated. Numeric data
parameters that accept fractional values are called real numbers. For more information
see the chapter, “Interface Functions.”

All numbers are expected to be strings of ASCII characters.

» When sending the number 9, you would send a byte representing the ASCII
code for the character “9” (which is 57).

» Athree-digit number like 102 would take up three bytes (ASCII codes 49, 48,
and 50). The number of bytes is figured automatically when you include the
entire instruction in a string.

1-12

Introduction to Programming
Embedded Strings

Embedded Strings

Embedded strings contain groups of alphanumeric characters which are treated as a
unit of data by the oscilloscope. An example of this is the line of text written to the
advisory line of the oscilloscope with the :SYSTEM:DSP command:
:SYSTEM:DSP ""This is a message.""

You may delimitembedded strings with either single () or double (") quotation marks.
These strings are case-sensitive, and spaces are also legal characters.

Program Message Terminator

The program instructions within a data message are executed after the program
message terminator is received. The terminator may be either an NL (New Line)
character, an EOI (End-Or-ldentify) asserted in the GPIB interface, or a combination
of the two. Asserting the EOI sets the EOI control line low on the last byte of the data
message. The NL character is an ASCII linefeed (decimal 10).

New Line Terminator Functions Like EOS and EOT

The NL (New Line) terminator has the same functionasan EOS (End Of String)
and EOT (End Of Text) terminator.

1-13

Introduction to Programming
Common Commands within a Subsystem

Common Commands within a Subsystem

Common commands can be received and processed by the oscilloscope whether they
are sent over the bus as separate program messages or within other program messages.
If you have selected a subsystem, and a common command is received by the
oscilloscope, the oscilloscope remains in the selected subsystem. For example, if the
program message

" :ACQUIRE:AVERAGE ON; *CLS;COUNT 1024"

is received by the oscilloscope, the oscilloscope turns averaging on, then clears the
status information without leaving the selected subsystem.

If some other type of command is received within a program message, you must re-
enter the original subsystem after the command. For example, the program message
" :ACQUIRE:AVERAGE ON; :AUTOSCALE; : ACQUIRE:AVERAGE: COUNT 1024"
turns averaging on, completes the autoscale operation, then sets the acquire average
count. Here, :ACQUIRE must be sent again after AUTOSCALE to re-enter the
ACQUIRE subsystem and set the count.

Selecting Multiple Subsystems

You can send multiple program commands and program queries for different
subsystems on the same line by separating each command with a semicolon. The
colon following the semicolon lets you enter a new subsystem. For example:
<program mnemonic><data>; :<program mnemonic><data><terminator>

:CHANNEL1:RANGE 0.4;:TIMEBASE:RANGE 1

You can Combine Compound and Simple Commands

Multiple program commands may be any combination of compound and simple
commands.

Programming Getting Started

The remainder of this chapter explains how to set up the oscilloscope, how to retrieve
setup information and measurement results, how to digitize a waveform, and how to
pass data to the computer. The chapter, “Measure Commands” describes sending
measurement data to the oscilloscope.

1-14

Introduction to Programming
Initialization

Initialization

To make sure the bus and all appropriate interfaces are in a known state, begin every
program with an initialization statement. For example, HP BASIC providesa CLEAR
command which clears the interface buffer:

CLEAR 707 ! initializes the interface of the oscilloscope
When you are using GPIB, CLEAR also resets the oscilloscope's parser. The parser
is the program that reads in the instructions you send.

After clearing the interface, initialize the oscilloscope to a preset state:

OUTPUT 707;"*RST" ! initializes the oscilloscope to a preset
state

Initializing the Oscilloscope

The commands and syntax for initializing the oscilloscope are discussed in the
chapter, “Common Commands.” Refer to your GPIB manual and
programming language reference manual for information on initializing the
interface.

Autoscale

The AUTOSCALE feature of Agilent Technologies digitizing oscilloscopes performs
avery useful function on unknown waveforms by automatically setting up the vertical
channel, time base, and trigger level of the oscilloscope.

The syntax for the autoscale function is:
:AUTOSCALE<terminator>

Setting Up the Oscilloscope

A typical oscilloscope setup configures the vertical range and offset voltage, the
horizontal range, delay time, delay reference, trigger mode, trigger level, and slope.

A typical example of the commands sent to the oscilloscope are:

:CHANNEL1: PROBE 10; RANGE 16;O0FFSET 1.00<terminator>
:SYSTEM: HEADER OFF<terminator>
: TIMEBASE:RANGE 1E-3;DELAY 100E-6<terminator>

This example sets the time base at 1 ms full-scale (100 us/div), with delay of 100 ps.

Vertical is set to 16 V full-scale (2 V/div), with center of screen at 1 V, and probe
attenuation of 10.

1-15

Introduction to Programming
Example Program using HP Basic

10
20
30
40
50
60
70
80
90
100
110
120
125
130
140
150

CLEAR 707!

OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
END

707 ;
707;
707 ;
707;
707 ;
707;
707 ;
707;
707 ;
707;
707 ;
707;
707 ;
707;

Example Program using HP Basic

This program demonstrates the basic command structure used to program the
oscilloscope.

Initialize oscilloscope interface

"*RST"!Initialize oscilloscope to preset state

" :TIMEBASE:RANGE 5E-4"! Time base to 500 us full scale
":TIMEBASE:DELAY 0"! Delay to zero

" : TIMEBASE:REFERENCE CENTER"! Display reference at center
":CHANNEL1:PROBE 10"! Probe attenuation to 10:1

" :CHANNEL1:RANGE 1.6"! Vertical range to 1.6 V full scale
" :CHANNEL1:OFFSET -.4"! Offset to -0.4

" :CHANNEL1 : INPUT DC"! Coupling to DC

":TRIGGER:MODE EDGE"! Edge triggering

":TRIGGER:LEVEL CHAN1,-.4"! Trigger level to -0.4
":TRIGGER:SLOPE POSITIVE"! Trigger on positive slope
":SYSTEM:HEADER OFF<terminator>

":ACQUIRE:MODE RTIME"! Normal acquisition

" :DISPLAY:GRATICULE FRAME"! Grid off

Overview of the Program
« Line 10 initializes the oscilloscope interface to a known state.
» Line 20 initializes the oscilloscope to a preset state.

 Lines 30 through 50 set the time base, the horizontal time at 500 us full scale, and
0 s of delay referenced at the center of the graticule.

 Lines 60 through 90 set 10:1 probe attenuation, set the vertical range to 1.6 volts
full scale, center screen at —0.4 volts, and select DC 1 Mohm impedance coupling.

» Lines 100 through 120 configure the oscilloscope to trigger at —0.4 volts with
positive edge triggering.

» Line 125 turns system headers off.

» Line 130 configures the oscilloscope for real time acquisition.

 Line 140 turns the grid off.

1-16

Introduction to Programming
Using the DIGITIZE Command

Using the DIGITIZE Command

The DIGITIZE command is a macro that captures data using the acquisition
(ACQUIRE) subsystem. When the digitize process is complete, the acquisition is
stopped. You can measure the captured data by using the oscilloscope or by
transferring the data to a computer for further analysis. The captured data consists of
two parts: the preamble and the waveform data record.

After changing the oscilloscope configuration, the waveform buffers are cleared.
Before doing a measurement, you should send the DIGITIZE command to ensure new
data has been collected.

You can send the DIGITIZE command with no parameters for a higher throughput.
Refer to the DIGITIZE command in the chapter, “Root Level Commands” for details.

When the DIGITIZE command is sent to an oscilloscope, the specified channel’s
waveform is digitized using the current ACQUIRE parameters. Before sending the
‘WAVEFORM:DATA? query to download waveform data to your computer, you
should specify the WAVEFORM parameters.

The number of data points comprising a waveform varies according to the number
requested in the ACQUIRE subsystem. The ACQUIRE subsystem determines the
number of data points, type of acquisition, and number of averages used by the
DIGITIZE command. This lets you specify exactly what the digitized information
contains. The following program example shows a typical setup:

OUTPUT 707;":SYSTEM:HEADER OFF<terminator>

OUTPUT 707; " :ACQUIRE:MODE RTIME"<terminator>

OUTPUT 707;":ACQUIRE:COMPLETE 100"<terminator>

OUTPUT 707; " :WAVEFORM: SOURCE CHANNEL1"<terminator>

OUTPUT 707; " :WAVEFORM:FORMAT BYTE'"<terminator>

OUTPUT 707; " :ACQUIRE:COUNT 8"<terminator>

OUTPUT 707;" :ACQUIRE:POINTS 500"<terminator>

OUTPUT 707;":DIGITIZE CHANNEL1"<terminator>

OUTPUT 707; " :WAVEFORM:DATA?"<terminator>

This setup places the oscilloscope into the real time sampling mode using eight
averages. This means that when the DIGITIZE command is received, the command
will execute until the waveform has been averaged at least eight times.

After receiving the :WAVEFORM:DATA? query, the oscilloscope will start
downloading the waveform information.

Digitized waveforms are passed from the oscilloscope to the computer by sending a
numerical representation of each digitized point. The format of the numerical
representation is controlled by using the :WAVEFORM:FORMAT command and may
be selected as BYTE, WORD, or ASCII.

1-17

Introduction to Programming
Using the DIGITIZE Command

The easiest method of receiving a digitized waveform depends on data structures,
available formatting, and 1/O capabilities. You must convert the data values to
determine the voltage value of each point. These data values are passed starting with
the left most point on the oscilloscope’s display. For more information, refer to the
chapter, “Waveform Commands.”

When using GPIB, you may abort a digitize operation by sending a Device Clear over
the bus (for example, CLEAR 707).

1-18

Introduction to Programming
Receiving Information from the Oscilloscope

Receiving Information from the Oscilloscope

After receiving a query (a command header followed by a question mark), the
oscilloscope places the answer in its output queue. The answer remains in the output
queue until it is read or until another command is issued. When read, the answer is
transmitted across the interface to the computer. The input statement for receiving a
response message from an oscilloscope's output queue typically has two parameters;
the device address and a format specification for handling the response message. For
example, to read the result of the query command :CHANNELZ1:INPUT? you would
execute the HP BASIC statement:

ENTER <device address> ;Setting$

This would enter the current setting for the channel 1 coupling in the string variable
Setting$. The device address parameter represents the address of the oscilloscope.

All results for queries sent in a program message must be read before another program
message is sent. For example, when you send the query :MEASURE:RISETIME?,
you must follow that query with an input statement. In HP BASIC, this is usually
done with an ENTER statement.

Handle Queries Properly

If you send another command or query before reading the result of a query,
the output buffer will be cleared and the current response will be lost. Thiswill
also generate a query-interrupted error in the error queue. If you execute an
input statement before you send a query, it will cause the computer to wait
indefinitely.

The format specification for handling response messages depends on both the
computer and the programming language.

1-19

Introduction to Programming
String Variable Example

String Variable Example

The output of the oscilloscope may be numeric or character data depending on what
isqueried. Refer to the specific commands for the formats and types of data returned
from queries.

For the example programs, assume that the device being programmed is at device
address 707. The actual address depends on how you have configured the bus for
your own application.

In HP BASIC 5.0, string variables are case-sensitive, and must be expressed exactly
the same each time they are used. This example shows the data being returned to a
string variable;

10 DIM Rang$[30]

20 OUTPUT 707;":CHANNELI:RANGE?"

30 ENTER 707;Rang$

40 PRINT Rang$

50 END

After running this program, the computer displays:

+8.00000E-01

Numeric Variable Example

This example shows the data being returned to a numeric variable:

10 OUTPUT 707;" :CHANNELL :RANGE?"
20 ENTER 707;Rang

30 PRINT Rang

40 END

After running this program, the computer displays:
.8

1-20

Introduction to Programming
Definite-Length Block Response Data

Definite-Length Block Response Data

Definite-length block response data allows any type of device-dependent data to be
transmitted over the system interface as a series of 8-bit binary data bytes. This is
particularly useful for sending large quantities of data or 8-bit extended ASCII codes.
The syntax is a pound sign (#) followed by a non-zero digit representing the number
of digits in the decimal integer. After the non-zero digit is the decimal integer that
states the number of 8-bit data bytes being sent. This is followed by the actual data.

For example, for transmitting 4000 bytes of data, the syntax would be:
#44000 <4000 bytes of data> <terminator>

The “4” following the pound sign represents the number of digits in the number of
bytes, and “4000” represents the number of bytes to be transmitted.

1-21

Introduction to Programming
Multiple Queries

Multiple Queries

You can send multiple queries to the oscilloscope within a single program message,
but you must also read them back within a single program message. This can be
accomplished by either reading them back into a string variable or into multiple
numeric variables. For example, you could read the result of the query
:TIMEBASE:RANGE?;DELAY? into the string variable Results$ with the command:

ENTER 707;Results$

When you read the result of multiple queries into string variables, each response is
separated by a semicolon. For example, the response of the query
:TIMEBASE:RANGE?;DELAY? would be:

<range_value>;<delay_value>

Use the following program message to read the query
:TIMEBASE:RANGE?;DELAY? into multiple numeric variables:

ENTER 707;Resultl,Result2

Oscilloscope Status

Status registers track the current status of the oscilloscope. By checking the
oscilloscope status, you can find out whether an operation has completed and is
receiving triggers. The chapter, “Status Reporting” explains how to check the status
of the oscilloscope.

1-22

Connectivity

LAN, USB, and GPIB Interfaces

There are several types of interfaces that can be used to remotely program the
Infiniium oscilloscope including Local Area Network (LAN) interface and
GPIB interface. Telnet and sockets can also be used to connect to the
oscilloscope.

2-2

Connectivity
LAN Interface Connector

LAN Interface Connector

The oscilloscope is equipped with a LAN interface RJ-45 connector on the rear panel.
This allows direct connect to your network. However, before you can use the LAN
interface to program the oscilloscope, the network properties must be configured.
Unless you are a Network Administrator, you should contact your Network
Administrator to add the appropriate client, protocols, and configuration information
for your LAN. This information is different for every company.

GPIB Interface Connector

The oscilloscope is not equipped with a GPIB interface connector. You can, however,
order the N4865A GPIB-to-LAN adapter for the 9000A Series oscilloscope.

2-3

Connectivity
Default Startup Conditions

Default Startup Conditions

The following default conditions are established during power-up:

» The Request Service (RQS) bit in the status byte register is set to zero.
 All of the event registers are cleared.

» The Standard Event Status Enable Register is set to OXFF hex.

» Service Request Enable Register is set to 0x80 hex.

e The Operation Status Enable Register is set to OxFFFF hex.

» The Overload Event Enable Register is set to OXFF hex.

» The Mask Test Event Enable Register is set to OXFF hex.

You can change the default conditions using the *PSC command with a parameter of
1 (one). When set to 1, the Standard Event Status Enable Register is set 0x00 hex and
the Service Request Enable Register is set to 0x00 hex. This prevents the Power On
(PON) event from setting the SRQ interrupt when the oscilloscope is ready to receive
commands.

2-4

Connectivity
Interface Capabilities

Table 2-1

Interface Capabilities

The interface capabilities of this oscilloscope, as defined by IEEE 488.1 and IEEE
488.2, are listed in Table 2-1.

Interface Capabilities

Code
SH1
AH1
T5

L4

SR1
RL1
PPO
DC1
DT1
Co

E2

Interface Function
Source Handshake
Acceptor Handshake
Talker

Listener

Service Request
Remote Local
Parallel Poll
Device Clear
Device Trigger
Computer

Driver Electronics

Capability
Full Capability
Full Capability

Basic Talker/Serial Poll/Talk Only Mode/
Unaddress if Listen Address (MLA)

Basic Listener/
Unaddresses if Talk Address (MTA)

Full Capability

Complete Capability

No Capability

Full Capability

Full Capability

No Capability

Tri State (1 MB/SEC MAX)

Connectivity
GPIB Command and Data Concepts

GPIB Command and Data Concepts

The GPIB interface has two modes of operation: command mode and data mode. The
interface is in the command mode when the Attention (ATN) control line is true. The
command mode is used to send talk and listen addresses and various interface
commands such as group execute trigger (GET).

The interface is in the data mode when the ATN line is false. The data mode is used
to convey device-dependent messages across the bus. The device-dependent
messages include all of the oscilloscope-specific commands, queries, and responses
found in this manual, including oscilloscope status information.

2-6

Connectivity
Communicating Over the GPIB Interface

Communicating Over the GPIB Interface

Device addresses are sent by the computer in the command mode to specify who talks
and who listens. Because GPIB can address multiple devices through the same
interface card, the device address passed with the program message must include the
correct interface select code and the correct oscilloscope address.

Device Address = (Interface Select Code * 100) + Oscilloscope Address

The Oscilloscope is at Address 707 for Programming Examples

The programming examples in this manual assume that the oscilloscope is at
device address 707.

Interface Select Code

Each interface card has a unique interface select code. This code is used by the
computer to direct commands and communications to the proper interface. The
default is typically “7” for the GPIB interface cards.

Oscilloscope Address

Each oscilloscope on the GPIB must have a unique oscilloscope address between
decimal 0 and 30. This oscilloscope address is used by the computer to direct
commands and communications to the proper oscilloscope on an interface. The
defaultis typically “7” for this oscilloscope. You can change the oscilloscope address
in the Utilities, Remote Interface dialog box.

Do Not Use Address 21 for an Oscilloscope Address

Address 21 is usually reserved for the Computer interface Talk/Listen address,
and should not be used as an oscilloscope address.

2-7

Connectivity
Communicating Over the LAN Interface

Communicating Over the LAN Interface

The device address used to send commands and receive data using the LAN interface
is located in the Remote Setup dialog box (Utilities > Remote Setup).

The following C example program shows how to communicate with the oscilloscope
using the LAN interface and the Agilent Standard Instrument Control Library (SICL).

#include <sicl.h>
#define BUFFER_SIZE 1024

main ()

{

INST Bus;

int reason;

unsigned long actualcnt;
char buffer[BUFFER_SIZE];

/* Open the LAN interface */
Bus = iopen(“1an[130.29.71.143]:hpib7,7");
if(Bus != 0) {
/* Bus timeout set to 20 seconds */
itimeout (Bus, 20000);

/* Clear the interface */

iclear(Bus);

/* Query and print the oscilloscope’s Id */

iwrite(Bus, “*IDN?”, 5, 1, &actualcnt);

iread(Bus, buffer, BUFFER_SIZE, &reason, &actualcnt);
buffer[actualcnt - 1] = 0;

printf(“%s\n”, buffer);
iclose(Bus);

2-8

Connectivity
Communicating via Telnet and Sockets

Communicating via Telnet and Sockets

Telnet

To open a connection to the oscilloscope via a telnet connection, use the following
syntax in a command prompt:

telnet Oscilloscope_IP_Address 5024

5024 is the port number and the name of the oscilloscope can be used in place of the
IP address if desired.

After typing the above command line, press enter and a SCPI command line interface
will open. You can then use this as you typically would use a command line.

Sockets

Sockets can be used to connect to your oscilloscope on either a Windows or Unix
machine.

The sockets are located on port 5025 on your oscilloscope. Between ports 5024 and
5025, only six socket ports can be opened simultaneously. It is, therefore, important
that you use a proper close routine to close the connection to the oscilloscope. If you
forget this, the connection will remain open and you may end up exceeding the limit
of six socket ports.

Some basic commands used in communicating to your oscilloscope include:

* The receive command is: recv
e The send command is: send

Connectivity
Communicating via Telnet and Sockets

Below is a programming example (for a Windows-based machine) for opening and
closing a connection to your oscilloscope via sockets.

#include <winsock2.h>

Void main ()
{
WSADATA wsaData;
SOCKET mysocket = NULL;
char* ipAddress = “130.29.70.70";
const int ipPort = 5025;

//Initialize Winsock
int iResult = WSAStartup (MAKEWORD(2,2), &wsaData) ;
if (iResult != NO_ERROR)
{
printf (“Error at WSAStartup()\n”);
return NULL;

//Create the socket
mySocket = socket (AF_INET, SOCK_STREAM, IPPROTO_TCOP) ;

if (mySocket == INVALID_SOCKET)

{
printf (“*Error at socket(): %1d\n”, WSAGetLastError());
WSACleanup () ;

return NULL;
}

sockaddr_in clientService;

clientService.sin_family = AF_INET;
clientService.sin.addr.s_addr = inet_addr (ipAddress) ;
clientService.sin_port = htons (ipPort) ;

if (connect (mySocket, (SOCKADDR*) &clientService,
sizeof (clientService)))
{
printf(“Failed to connect.\n”);
WSACleanup () ;
return NULL;

//Do some work here

//Close socket when finished
closesocket (mySocket) ;

2-10

Connectivity
Bus Commands

Bus Commands

The following commands are IEEE 488.1 bus commands (ATN true). IEEE 488.2
defines many of the actions that are taken when these commands are received by the
oscilloscope.

Device Clear

The device clear (DCL) and selected device clear (SDC) commands clear the input
buffer and output queue, reset the parser, and clear any pending commands. If either
of these commands is sent during a digitize operation, the digitize operation is aborted.

Group Execute Trigger

The group execute trigger (GET) command arms the trigger. This is the same action
produced by sending the RUN command.

Interface Clear

The interface clear (IFC) command halts all bus activity. This includes unaddressing
all listeners and the talker, disabling serial poll on all devices, and returning control
to the system computer.

2-11

Connectivity
Bus Commands

2-12

Message Communication and System
Functions

Message Communication and System
Functions

This chapter describes the operation of oscilloscopes that operate in
compliance with the IEEE 488.2 (syntax) standard. It is intended to give you
enough basic information about the IEEE 488.2 standard to successfully
program the oscilloscope. You can find additional detailed information about
the IEEE 488.2 standard in ANSI/IEEE Std 488.2-1987, “IEEE Standard
Codes, Formats, Protocols, and Common Commands.”

This oscilloscope series is designed to be compatible with other Agilent
Technologies IEEE 488.2 compatible instruments. Oscilloscopes that are
compatible with IEEE 488.2 must also be compatible with IEEE 488.1 (GPI1B
bus standard); however, IEEE 488.1 compatible oscilloscopes may or may not
conform to the IEEE 488.2 standard. The IEEE 488.2 standard defines the
message exchange protocols by which the oscilloscope and the computer will
communicate. It also defines some common capabilities that are found in all
IEEE 488.2 oscilloscopes.

This chapter also contains some information about the message
communication and system functions not specifically defined by IEEE 488.2.

3-2

Message Communication and System Functions
Protocols

Protocols

The message exchange protocols of IEEE 488.2 define the overall scheme used by
the computer and the oscilloscope to communicate. This includes defining when it
is appropriate for devices to talk or listen, and what happens when the protocol is not

followed.

Functional Elements

Before proceeding with the description of the protocol, you should understand a few
system components, as described here.

Input Buffer

Output Queue

Parser

The input buffer of the oscilloscope is the memory
area where commands and queries are stored prior
to being parsed and executed. It allows a computer
to send a string of commands, which could take
some time to execute, to the oscilloscope, then
proceed to talk to another oscilloscope while the first
oscilloscope is parsing and executing commands.

The output queue of the oscilloscope is the
memory area where all output data or response
messages are stored until read by the computer.

The oscilloscope's parser is the component that
interprets the commands sent to the oscilloscope and
decides what actions should be taken. “Parsing”
refers to the action taken by the parser to achieve
this goal. Parsing and execution of commands
begins when either the oscilloscope recognizes a
program message terminator, or the input buffer
becomes full. If you want to send a long sequence
of commands to be executed, then talk to another
oscilloscope while they are executing, you should
send all of the commands before sending the
program message terminator.

Message Communication and System Functions
Protocols

Protocol Overview

The oscilloscope and computer communicate using program messages and response
messages. These messages serve as the containers into which sets of program
commands or oscilloscope responses are placed.

A program message is sent by the computer to the oscilloscope, and a response
message is sent from the oscilloscope to the computer in response to a query message.
A query message is defined as being a program message that contains one or more
queries. The oscilloscope will only talk when it has received a valid query message,
and therefore has something to say. The computer should only attempt to read a
response after sending a complete query message, but before sending another program
message.

Remember this Rule of Oscilloscope Communication

The basic rule to remember is that the oscilloscope will only talk when
prompted to, and it then expects to talk before being told to do something else.

Protocol Operation

When you turn the oscilloscope on, the input buffer and output queue are cleared, and
the parser is reset to the root level of the command tree.

The oscilloscope and the computer communicate by exchanging complete program
messages and response messages. This means that the computer should always
terminate a program message before attempting to read a response. The oscilloscope
will terminate response messages except during a hard copy output.

After you send a query message, the next message should be the response message.
The computer should always read the complete response message associated with a
query message before sending another program message to the same oscilloscope.

The oscilloscope allows the computer to send multiple queries in one query message.
This is called sending a “compound query.” Multiple queries in a query message are
separated by semicolons. The responses to each of the queries in a compound query
will also be separated by semicolons.

Commands are executed in the order they are received.

Protocol Exceptions

If an error occurs during the information exchange, the exchange may not be
completed in a normal manner.

Message Communication and System Functions
Protocols

Suffix Multiplier
The suffix multipliers that the oscilloscope will accept are shown in Table 3-1.

Table 3-1 <suffix mult>

Value Mnemonic Value Mnemonic
1E18 EX 1E-3 M

1E15 PE 1E-6 U

1E12 T 1E-9 N

1E9 G 1E-12 P

1E6 MA 1E-15 F

1E3 K 1E-18 A

Suffix Unit

The suffix units that the oscilloscope will accept are shown in Table 3-2.

Table 3-2 <suffix unit>
Suffix Referenced Unit
\Y Volt
S Second

3-6

Status Reporting

Status Reporting

An overview of the oscilloscope's status reporting structure is shown in Figure
4-1. The status reporting structure shows you how to monitor specific events
in the oscilloscope. Monitoring these events lets you determine the status of
an operation, the availability and reliability of the measured data, and more.

« To monitor an event, first clear the event, then enable the event. All of the
events are cleared when you initialize the oscilloscope.

» To generate a service request (SRQ) interrupt to an external computer,
enable at least one bit in the Status Byte Register.

The Status Byte Register, the Standard Event Status Register group, and the
Output Queue are defined as the Standard Status Data Structure Model in IEEE
488.2-1987. IEEE 488.2 defines data structures, commands, and common bit
definitions for status reporting. There are also oscilloscope-defined structures
and bits.

4-2

Status Reporting

Figure 4-1
Trigger
Event —
Register
Arm Operation gf;ti]a;lon
Event > Status Endble —
Register Register)
Register
0
utput
Queue
Error
Queue
Standard Standard
|—> Event Event
v [Status =
Status
Register Enable
Key g Register
Queue
M
essage
Queue

Status
Byte
Register

Service Service
— Request - Request
Enable Generation
Register
Service
Request(SRQ)
Interrupt

to Computer

54800b45

Status Reporting Overview Block Diagram

Table 4-1

The status reporting structure consists of the registers shown here.

Table 4-1 lists the bit definitions for each bit in the status reporting data

structure.

Status Reporting Bit Definition

Bit
PON
URQ
CME
EXE

Description
Power On

User Request
Command Error
Execution Error

Definition

Indicates power is turned on.

Not Used. Permanently set to zero.
Indicates if the parser detected an error.

Indicates if a parameter was out of range or was
inconsistent with the current settings.

4-3

Status Reporting

Bit
DDE
QYE

RQL
OPC

OPER

RQS
MSS

ESB

MAV
MSG
USR

TRG

WAIT
TRIG

Description Definition

Device Dependent Errorindicates if the device was unable to complete an
operation for device-dependent reasons.

Query Error Indicates if the protocol for queries has been violated.

Request Control Indicates if the device is requesting control.

Operation Complete Indicates if the device has completed all pending
operations.

Operation Status Indicates if any of the enabled conditions in the

Register Operation Status Register have occurred.

Request Service Indicates that the device is requesting service.

Master Summary Statusindicates if a device has a reason for requesting
service.

Event Status Bit Indicates if any of the enabled conditions in the
Standard Event Status Register have occurred.

Message Available Indicates if there is a response in the output queue.

Message Indicates if an advisory has been displayed.

User Event Register Indicates if any of the enabled conditions have
occurred in the User Event Register.

Trigger Indicates if a trigger has been received.
Wait for Trigger Indicates the oscilloscope is armed and ready for
trigger.

4-4

Status Reporting
Status Reporting Data Structures

Status Reporting Data Structures

The different status reporting data structures, descriptions, and interactions are shown
in Figure 4-2. To make it possible for any of the Standard Event Status Register bits
to generate a summary bit, you must enable the corresponding bits. These bits are
enabled by using the *ESE common command to set the corresponding bit in the
Standard Event Status Enable Register.

To generate a service request (SRQ) interrupt to the computer, you must enable at
least one bit in the Status Byte Register. These bits are enabled by using the *SRE
common command to set the corresponding bit in the Service Request Enable
Register. These enabled bits can then set RQS and MSS (bit 6) in the Status Byte
Register.

For more information about common commands, see the “Common Commands”
chapter.

4-5

Status Reporting
Status Reporting Data Structures

Figure 4-2

B 6 5 4 3 2 0
ase AL IGM[&L IGN| HIGH | LOwW Read by:
e Fall | colP
REE‘E(;“" Fall [COlP | aMP 1P TER?
[[[[
s| Test Set by: MTEE
Event Enable Read by: MTEE?
Register
R
- - - . Process coe
6 5 & 3 2 1 0 Dane "
Over load Read by: Event
Event == | === | === | -~ |chans|chan3|chanz|Chant| g R Regisier
Register
over load
Event Enable
Register
ot d . Read by: | , \ion [Read by:
tuto ATER? rigger aro scqisition P
Trigger o Armed Done o
Event :J" Event Rl Event :
Register £ Register Register DONE
- Read by
1 0 9 7 5
5 1" 10 E 8 6 5 “ 3 2 0 Shere
0 AUTO | pep | oo | oo o |wWarT| | ___ | ___ |PROC|ACO
VR I TRi6 s TRIG DOKE | DOIE
Sel by:
Operation e
Status Enable OPEE
Register Read by:
OPEE?
/"l\')
&)
To BIt 7 of
5.913b01

Status Byte Register

Status Reporting Data Structures

4-6

Status Reporting
Status Reporting Data Structures

Figure 4-2 (Continued)

Read by:

7 6 5 4 3 2 1 0 <ESR?

Standard
Event Status PON | URQ CME EXE DDE | QYE | RQC oPC

Register

[[[[[[I I
Standard Set by: xESE <NRf>
Event RSEtguitsutserEnuble Read by: =ESE?

Read by:
| Read by: TER?
:SYST:DSP? Trigger
Message Event | TRG
Even% * Register
Register
From Operation
Status Register Output
Queue

-=—— Read by: SERIAL POLL
Read by:
7 6 5 4 3 2 1 0 «STB?
Status RQS
Byte OPER ESB | MAV | === | MSG | --- | TRG
Register MSS
I I I I I
R Seriv\Ecebl Set by: x%SRE<NRf>
eques nable .
Regisfer Read by: =SRE?
% Messages sent to the display via :SYST:DSP
will not set this bit. The bit
54800b47

is set only
SRQ by internal messages.

Status Reporting Data Structures (Continued)

4-7

Status Reporting
Status Byte Register

Status Byte Register

The Status Byte Register is the summary-level register in the status reporting structure.
It contains summary bits that monitor activity in the other status registers and queues.
The Status Byte Register is a live register. That is, its summary bits are set and cleared
by the presence and absence of a summary bit from other event registers or queues.

If the Status Byte Register is to be used with the Service Request Enable Register to
set bit 6 (RQS/MSS) and to generate an SRQ, at least one of the summary bits must
be enabled, then set. Also, event bits in all other status registers must be specifically
enabled to generate the summary bit that sets the associated summary bit in the Status
Byte Register.

You can read the Status Byte Register using either the *STB? common command
query or the GPIB serial poll command. Both commands return the decimal-weighted
sum of all set bits in the register. The difference between the two methods is that the
serial poll command reads bit 6 as the Request Service (RQS) bit and clears the bit
which clears the SRQ interrupt. The *STB? query reads bit 6 as the Master Summary
Status (MSS) and does not clear the bit or have any effect on the SRQ interrupt. The
value returned is the total bit weights of all of the bits that are set at the present time.

The use of bit 6 can be confusing. This bit was defined to cover all possible computer
interfaces, including a computer that could not do a serial poll. The important point
to remember is that if you are using an SRQ interrupt to an external computer, the
serial poll command clears bit 6. Clearing bit 6 allows the oscilloscope to generate
another SRQ interrupt when another enabled event occurs.

The only other bit in the Status Byte Register affected by the *STB? query is the
Message Available bit (bit 4). If there are no other messages in the Output Queue, bit
4 (MAV) can be cleared as a result of reading the response to the *STB? query.

If bit 4 (weight = 16) and bit 5 (weight = 32) are set, a program would print the sum
of the two weights. Since these bits were not enabled to generate an SRQ, bit 6 (weight
= 64) is not set.

4-8

Example 1

Example 2

Status Reporting
Status Byte Register

This HP BASIC example uses the *STB? query to read the contents of the
oscilloscope’s Status Byte Register when none of the register's summary bits are
enabled to generate an SRQ interrupt.

10 OUTPUT 707; " :SYSTEM:HEADER OFF; *STB?" 'Turn headers off
20 ENTER 707;Result 'Place result in a numeric variable
30 PRINT Result 'Print the result

40 End

The next program prints 132 and clears bit 6 (RQS) of the Status Byte Register. The
difference in the decimal value between this example and the previous one is the value
of bit 6 (weight = 64). Bit 6 is set when the first enabled summary bit is set, and is

cleared when the Status Byte Register is read by the serial poll command.

This example uses the HP BASIC serial poll (SPOLL) command to read the contents
of the oscilloscope’s Status Byte Register.
10 Result = SPOLL(707)

20 PRINT Result
30 END

Use Serial Polling to Read the Status Byte Register

Serial polling is the preferred method to read the contents of the Status Byte
Register because it resets bit 6 and allows the next enabled event that occurs to

generate a new SRQ interrupt.

Status Reporting
Service Request Enable Register

Example

Service Request Enable Register

Setting the Service Request Enable Register bits enables corresponding bits in the
Status Byte Register. These enabled bits can then set RQS and MSS (bit 6) in the
Status Byte Register.

Bits are set in the Service Request Enable Register using the *SRE command, and
the bits that are set are read with the *SRE? query. Bit 6 always returns 0. Refer to
the Status Reporting Data Structures shown in Figure 4-2.

This example sets bit 4 (MAV) and bit 5 (ESB) in the Service Request Enable Register.
OUTPUT 707;"*SRE 48"

This example uses the parameter “48” to allow the oscilloscope to generate an SRQ
interrupt under the following conditions:

» When one or more bytes in the Output Queue set bit 4 (MAV).

» Whenan enabled event in the Standard Event Status Register generates a summary
bit that sets bit 5 (ESB).

Message Event Register

This register sets the MSG bit in the status byte register when an internally generated
message is written to the advisory line on the oscilloscope. The message is read using
the :SYSTEM:DSP? query. Note that messages written to the advisory line on the
oscilloscope using the :SYSTEM:DSP command does not set the MSG status bit.

Trigger Event Register

This register sets the TRG bit in the status byte register when a trigger event occurs.

The trigger event register stays set until it is cleared by reading the register with the
TER? query or by using the *CLS (clear status) command. If your application needs
to detect multiple triggers, the trigger event register must be cleared after each one.

If you are using the Service Request to interrupt a computer operation when the trigger
bit is set, you must clear the event register after each time it is set.

4-10

Status Reporting
Standard Event Status Register

Example

Standard Event Status Register

The Standard Event Status Register (SESR) monitors the following oscilloscope
status events:

* PON - Power On

e CME - Command Error

» EXE - Execution Error

» DDE - Device Dependent Error
* QYE - Query Error

* RQC - Request Control

e OPC - Operation Complete

When one of these events occurs, the corresponding bit is set in the register.
If the corresponding bit is also enabled in the Standard Event Status Enable Register,
a summary bit (ESB) in the Status Byte Register is set.

You can read the contents of the Standard Event Status Register and clear the register
by sending the *ESR? query. The value returned is the total bit weights of all bits set
at the present time.

This example uses the *ESR? query to read the contents of the Standard Event Status
Register.

10 OuTpPUT 707;":SYSTEM:HEADER OFF" !Turn headers off

20 OUTPUT 707;"*ESR?"

30 ENTER 707;Result !Place result in a numeric variable
40 PRINT Result 'Print the result

50 End

If bit 4 (weight = 16) and bit 5 (weight = 32) are set, the program prints the sum of
the two weights.

4-11

Status Reporting
Standard Event Status Enable Register

Example

Standard Event Status Enable Register

For any of the Standard Event Status Register bits to generate a summary bit, you
must first enable the bit. Use the *ESE (Event Status Enable) common command to
set the corresponding bit in the Standard Event Status Enable Register. Set bits are
read with the *ESE? query.

Suppose your application requires an interrupt whenever any type of error occurs.
The error status bits in the Standard Event Status Register are bits 2 through 5. The
sum of the decimal weights of these bits is 60. Therefore, you can enable any of these
bits to generate the summary bit by sending:

OUTPUT 707;"*ESE 60"

Whenever an error occurs, the oscilloscope sets one of these bits in the Standard Event
Status Register. Because the bits are all enabled, a summary bit is generated to set
bit 5 (ESB) in the Status Byte Register.

Ifbit5 (ESB) in the Status Byte Register is enabled (via the *SRE command), aservice
request interrupt (SRQ) is sent to the external computer.

Disabled Standard Event Status Register Bits Respond, but Do Not Generate
a Summary Bit

Standard Event Status Register bits that are not enabled still respond to their
corresponding conditions (that is, they are set if the corresponding event
occurs). However, because they are not enabled, they do not generate a
summary bit in the Status Byte Register.

4-12

Status Reporting
Operation Status Register

Operation Status Register

This register hosts the following bits:

+ ACQDONEbit0

* PROC DONE hit1

* WAIT TRIG hit5

* MASK bit9

* AUTO TRIG bit 11

e OVLRDbit12

The ACQ DONE done hit is set by the Acquisition Done Event Register.

The PROC DONE bit is set by the Process Done Event Register and indicates that all
functions and all math processes are done.

The WAIT TRIG bit is set by the Trigger Armed Event Register and indicates the
trigger is armed.

The MASK bit is set whenever at least one of the Mask Test Event Register bits is
enabled.

The AUTO TRIG bhit is set by the Auto Trigger Event Register.

The OVLR bit is set whenever at least one of the Overload Event Register bits is
enabled.

If any of these bits are set, the OPER bit (bit 7) of the Status Byte Register is set. The
Operation Status Register is read and cleared with the OPER? query. The register
output is enabled or disabled using the mask value supplied with the OPEE command.

4-13

Status Reporting
Operation Status Enable Register

Example

Operation Status Enable Register

For any of the Operation Status Register bits to generate a summary bit, you must first
enable the bit. Use the OPEE (Operation Event Status Enable) command to set the
corresponding bit in the Operation Status Enable Register. Set bits are read with the
OPEE? query.

Suppose your application requires an interrupt whenever any event occurs in the mask
test register. The error status bit in the Operation Status Register is bit 9. Therefore,
you can enable this bit to generate the summary bit by sending:

OUTPUT 707;”OPEE 512” (hex 200)

Whenever an error occurs, the oscilloscope sets this bit in the Mask Test Event
Register. Because this bit is enabled, a summary bit is generated to set bit 9 (OPER)
in the Operation Status Register.

If bit 7 (OPER) in the Status Byte Register is enabled (via the *SRE command), a
service request interrupt (SRQ) is sent to the external computer.

Disabled Operation Status Register Bits Respond, but Do Not Generate a
Summary Bit

Operation Status Register bits that are not enabled still respond to their
corresponding conditions (that is, they are set if the corresponding event
occurs). However, because they are not enabled, they do not generate a

summary bit in the Status Byte Register.

4-14

Status Reporting
Mask Test Event Register

Mask Test Event Register

This register hosts the following bits:
» Mask Test Complete bit (bit 0)

e Mask Test Fail bit (bit 1)

» Mask Low Amplitude bit (bit 2)

» Mask High Amplitude bit (bit 3)

e Mask Align Complete bit (bit 4)

» Mask Align Fail bit (bit 5)

The Mask Test Complete bit is set whenever the mask test is complete.

The Mask Test Fail bit is set whenever the mask test failed.

The Mask Low Amplitude bit is set whenever the signal is below the mask amplitude.
The Mask High Amplitude bit is set whenever the signal is above the mask amplitude.
The Mask Align Complete bit is set whenever the mask align is complete.

The Mask Align Fail bit is set whenever the mask align failed.

If any of these bits are set, the MASK bit (bit 9) of the Operation Status Register is
set. The Mask Test Event Register is read and cleared with the MTER? query. The
register output is enabled or disabled using the mask value supplied with the MTEE
command.

4-15

Status Reporting
Mask Test Event Enable Register

Example

Mask Test Event Enable Register

For any of the Mask Test Event Register bits to generate a summary bit, you must
first enable the bit. Use the MTEE (Mask Test Event Enable) command to set the
corresponding bit in the Mask Test Event Enable Register. Set bits are read with the
MTEE? query.

Suppose your application requires an interrupt whenever a Mask Test Fail occurs in
the mask test register. You can enable this bit to generate the summary bit by sending:
OUTPUT 707; "MTEE 2"

Whenever an error occurs, the oscilloscope sets the MASK bit in the Operation Status
Register. Because the bits in the Operation Status Enable Register are all enabled, a
summary bit is generated to set bit 7 (OPER) in the Status Byte Register.

If bit 7 (OPER) in the Status Byte Register is enabled (via the *SRE command), a
service request interrupt (SRQ) is sent to the external computer.

Disabled Mask Test Event Register Bits Respond, but Do Not Generate a
Summary Bit

Mask Test Event Register bits that are not enabled still respond to their

corresponding conditions (that is, they are set if the corresponding event
occurs). However, because they are not enabled, they do not generate a

summary bit in the Operation Status Register.

4-16

Status Reporting
Acquisition Done Event Register

Acquisition Done Event Register

The Acquisition Done Event Register (ACQ DONE) sets bit 0 (ACQ DONE bit) in
the Operation Status Register when the oscilloscope acquisition is completed.

The ACQ DONE event register stays set until it is cleared by reading the register by
a ADER? query. If your application needs to detect multiple acquisitions, the ACQ
DONE event register must be cleared after each acquisition.

Process Done Event Register

The Process Done Event Register(PDER) sets bit 1 (PROC DONE) of the Operation
Status Register when all functions and all math operations are completed. The PDER
bit stays set until cleared by a PDER? query.

Trigger Armed Event Register

The Trigger Armed Event Register (TDER) sets bit 5 (WAIT TRIG) in the Operation
Status Register when the oscilloscope becomes armed.
The ARM event register stays set until it is cleared by reading the register with the

AER? query. If your application needs to detect multiple triggers, the ARM event
register must be cleared after each one.

Auto Trigger Event Register

The Auto Trigger Event Register (AUTO TRIG) sets bit 11 (AUTO TRIG) in the
Operation Status Register when an auto trigger event occurs. The AUTO TRIG
register stays set until it is cleared by reading the register with the ATER? query. If
the application needs to detect multiple auto trigger events, the AUT TRIG register
must be cleared after each one.

4-17

Status Reporting
Error Queue

Error Queue

As errors are detected, they are placed in an error queue. This queue is a first-in, first-
out queue. If the error queue overflows, the last error in the queue is replaced with
error -350, “Queue overflow.” Any time the queue overflows, the oldest errors remain
in the queue, and the most recent error is discarded. The length of the oscilloscope's
error queue is 30 (29 positions for the error messages, and 1 position for the “Queue
overflow” message).

The error queue is read with the :SYSTEM:ERROR? query. Executing this query
reads and removes the oldest error from the head of the queue, which opens a position
at the tail of the queue for a new error. When all the errors have been read from the
queue, subsequent error queries return 0, “No error.”

The error queue is cleared when any of these events occur:

» When the oscilloscope is powered up.

» When the oscilloscope receives the *CLS common command.
» When the last item is read from the error queue.

For more information on reading the error queue, refer to the :SYSTEM:ERROR?
query in the System Commands chapter. For a complete list of error messages, refer
to the chapter, “Error Messages.”

Output Queue

The output queue stores the oscilloscope-to-computer responses that are generated by
certain oscilloscope commands and queries. The output queue generates the Message
Available summary bit when the output queue contains one or more bytes. This
summary bit sets the MAV bit (bit 4) in the Status Byte Register. You may read the
output queue with the HP Basic ENTER statement.

4-18

Status Reporting
Message Queue

Message Queue

The message queue contains the text of the last message written to the advisory line
on the screen of the oscilloscope. The queue is read with the :SYSTEM:DSP? query.
Note that messages sent with the :SYSTEM:DSP command do not set the MSG status
bit in the Status Byte Register.

Clearing Registers and Queues

The *CLS common command clears all event registers and all queues except the
output queue. If *CLS is sent immediately following a program message terminator,
the output queue is also cleared.

4-19

Status Reporting
Clearing Registers and Queues

Figure 4-3

Do you want
to do status
repaorting?

Reset the instrument
and clear the status
registers.

QUTPUT 707; "+RST"
QUTPUT 707, "*CLS"

%yes

Do you want to
send a Service Request
(SRQ) interrupt to the
controller?

no

'

Use the following to
read the Standord
Event Status Register:
OUTPUT 7@7;'"xESR?
ENTER 707;<variable>
PRINT <variable>

Do you want to
report events monitored by

v

Activate the instrument function
that you waont to monitor

'

the Standard Event Status
Register?

Use the *ESE common command When an interrupt occurs, read w -
to enable the bits you want to the Status Byte Register. Use the Use U’ne fDHDW‘”? to
use to generate a summary bit following: P=SPOLL(707) see if an oPemtwon
to the Status Byte Register. PRINT P C‘)ZT;S:P;Z;?*OPC?
; ENTER 707;<variable>
-t PRINT <variable>
W To read the Stotus Byte Register

use the following:
OUTPUT 7@7;"*5TB?"
ENTER 7@7;<variable>
PRINT <variable>

Use the #ESE common command to
enable the bits you want to
generate the RQS/MSS bit to set
bit 6 in the Stotus Byte Register
ond send an SRQ to the computer. This reads the decimal value of Y

If events ore monitored by the the Status Byte Register. Use the following to

Standard event Status Register read the contents of
also Enaoble ESB with +SRE command. the status byte:
OUTPUT 7@7;"*5TB?

Determine which bits in the ENTER 707;<variable>
Status Byte Register are set, PRINT <variable>
w(END e 54700805

Status Reporting Decision Chart

4-20

Remote Acquisition Synchronization

Introduction

When remotely controlling an oscilloscope with SCPI commands, it is often necessary
to know when the oscilloscope has finished the previous operation and is ready for
the next SCPI command. The most common example is when an acquisition is started
using the :DIG, :RUN, or :SINGLE commands. Before a measurement result can be
queried, the acquisition must complete. Too often, fixed delays are used to accomplish
this wait, but fixed delays often use excessive time or the time may not be long enough.
A better solution is to use synchronous commands and status to know when the
oscilloscope is ready for the next request.

N

Programming Flow

Most remote programming follows these three general steps:

Setup the oscilloscope and device under test
Acquire a waveform
Retrieve results

Setting Up the Oscilloscope

Before making changes to the oscilloscope setup, it is best to make sure it is stopped
using the :STOP command followed by the *OPC? command.

NOTE: It is not necessary to use the *OPC? command, hard coded waits, or status
checking when setting up the oscilloscope.

After the oscilloscope is configured, it is ready for an acquisition.

Acquiring a Waveform

5-2

Table 0-1

Remote Acquisition Synchronization
Retrieving Results

When acquiring a waveform, there are two possible methods used to wait for the
acquisition to complete. These methods are blocking and polling. The table below
details when each method should be chosen and why.

Use When

Advantages

Disadvantages

Blocking Wait Polling Wait

You know the You know the
oscilloscope will trigger oscilloscope may or may
based on the oscilloscope not trigger based on the
setup and device under oscilloscope setup and
test device under test

* Noneed for polling + Remote interface will
* Fast method not timeout

* No need for device
clear if no trigger

e Remote interface may *+ Slower method

timeout » Required polling loop
e Deviceclearonlyway+ Required known

to get control of maximum wait time

oscilloscope if there is

no trigger

Retrieving Results

Once the acquisition is complete, it is safe to retrieve measurements and statistics.

Acquisition Synchronization

Blocking Synchronization

5-3

Example

Example

Remote Acquisition Synchronization
Acquisition Synchronization

Use the :DIGitize command to start the acquisition. This blocks subsequent queries
until the acquisition and processing is complete.

// Setup
: TRIGGER:MODE EDGE
: TIMEBASE: SCALE 5e-9

//Acquire
:DIG

//Get results
:MEASURE:RISETIME?

Polling Synchronization With Timeout

This example requires a timeout value so the operation can abort if an acquisition
does not occur within the timeout period.

TIMEOUT = 1000ms

currentTime = Oms

// Setup

:STOP; *OPC? // 1f not stopped
:ADER? // clear ADER event

// Acquire
: SINGLE

while (currentTime <= TIMEOUT)
{
if (:ADER? == 1)
{
break;
}
else
{
// Use small wait to prevent excessive
// queries to the oscilloscope
wait (100ms)
currentTime += 100ms

5-4

Remote Acquisition Synchronization
Single Shot Device Under Test (DUT)

}

//Get results
if (currentTime < TIMEOUT)
{
:MEASURE:RISETIME?
}

Example

Single Shot Device Under Test (DUT)

The examples in the previous section (Acquisition Synchronization) assumed the
DUT is continually running and, therefore, the oscilloscope will have more than one
opportunity to trigger. With a single shot DUT, there is only one opportunity for the
oscilloscope to trigger so it is necessary for the oscilloscope to be armed and ready
before the DUT is enabled.

NOTE: The blocking :DIGitize command cannot be used for a single shot DUT
because once the :DIGitize command is issued, the oscilloscope is blocked from any
further commands until the acquisition is complete.

This example is the same as the previous example with the addition of checking for
the armed event status.

TIMEOUT = 1000ms
currentTime = Oms

5-5

Remote Acquisition Synchronization
Averaging Acquisition Synchronization

// Setup
:STOP; *OPC? // if not stopped
:ADER? // clear ADER event

// Acquire
: SINGLE

while (AER? == 0)
{

wait (100ms)
}

//oscilloscope is armed and ready, enable DUT here

while (currentTime <= TIMEOUT)
{
if (:ADER? == 1)
{
break;
}
else
{
// Use small wait to prevent excessive
// queries to the oscilloscope
wait (100ms)
currentTime += 100ms

}

//Get results
if (currentTime < TIMEOUT)
{
:MEASURE:RISETIME?
}

Averaging Acquisition Synchronization

When averaging, it is necessary to know when the average count has been reached.
Since an ADER/PDER event occurs for every acquisition in the average count, these
commands cannot be used. The :SINGle command does not average.

5-6

Example

Remote Acquisition Synchronization
Averaging Acquisition Synchronization

If it is known that a trigger will occur, a :DIG will acquire the complete number of
averages, but if the number of averages is large, it may cause a timeout on the
connection.

The example below acquires the desired number of averages and then stops running.

AVERAGE_COUNT = 256

:STOP; *OPC?

: TER?

:ACQ:AVERage: COUNt AVERAGE_COUNT
:ACQ:AVERage ON

:RUN

//Assume the oscilloscope will trigger, if not put a check here
while (:WAV:COUNT? < AVERAGE_COUNT)

{
wait (100ms)

:STOP; *OPC?

// Get results

5-7

Remote Acquisition Synchronization
Averaging Acquisition Synchronization

5-8

Programming Conventions

Programming Conventions

This chapter describes conventions used to program the Infiniium-Series
Oscilloscopes, and conventions used throughout this manual. A description
of the command tree and command tree traversal is also included.

6-2

Programming Conventions
Truncation Rule

Table 6-1

Truncation Rule

The truncation rule is used to produce the short form (abbreviated spelling) for the
mnemonics used in the programming headers and parameter arguments.

Command Truncation Rule

The mnemonic is the first four characters of the keyword, unless the fourth
character is a vowel. Then the mnemonic is the first three characters of the
keyword. If the length of the keyword is four characters or less, this rule does

not apply, and the short form is the same as the long form.

Table 5-1 shows how the truncation rule is applied to commands.

Mnemonic Truncation

Long Form Short Form How the Rule is Applied

RANGE RANG Short form is the first four characters of the keyword.

PATTERN PATT Short form is the first four characters of the keyword.

DISK DISK Short form is the same as the long form.

DELAY DEL Fourth character is a vowel; short form is the first three
characters.

Programming Conventions
The Command Tree

The Command Tree

The command tree in Figure 5-1 shows all of the commands in the Infiniium-Series
Oscilloscopes and the relationship of the commands to each other. The IEEE 488.2
common commands are not listed as part of the command tree because they do not
affect the position of the parser within the tree.

When a program message terminator (<NL>, linefeed - ASCII decimal 10) or a
leading colon (:) is sent to the oscilloscope, the parser is set to the “root” of the
command tree.

Command Types

The commands in this oscilloscope can be viewed as three types: common commands,
root level commands, and subsystem commands.

Common commands are commands defined by IEEE 488.2 and control some
functions that are common to all IEEE 488.2 instruments. These commands are
independent of the tree and do not affect the position of the parser within the tree.
*RST is an example of a common command.

Root level commands control many of the basic functions of the oscilloscope.
These commands reside at the root of the command tree. They can always be
parsed if they occur at the beginning of a program message or are preceded by a
colon. Unlike common commands, root level commands place the parser back at
the root of the command tree. AUTOSCALE is an example of a root level
command.

Subsystem commands are grouped together under acommon node of the command
tree, such as the TIMEBASE commands. You may select only one subsystem at
a given time. When you turn on the oscilloscope initially, the command parser is
set to the root of the command tree and no subsystem is selected.

Programming Conventions
The Command Tree

Tree Traversal Rules

Command headers are created by traversing down the command tree. A legal
command header from the command tree would be :TIMEBASE:RANGE. This is
referred to as a compound header. A compound header is a header made up of two
or more mnemonics separated by colons. The compound header contains no spaces.
The following rules apply to traversing the tree.

Tree Traversal Rules

A leading colon or a program message terminator (<NL> or EOI true on the

last byte) places the parser at the root of the command tree. A leading colon is
acolon that is the first character of a program header. Executing a subsystem
command places the oscilloscope in that subsystem until a leading colon or a

program message terminator is found.

In the command tree, use the last mnemonic in the compound header as a reference
point (for example, RANGE). Then find the last colon above that mnemonic
(TIMEBASE:). Thatisthe pointwhere the parser resides. You cansend any command
below this point within the current program message without sending the mnemonics
which appear above them (for example, REFERENCE).

Programming Conventions
The Command Tree

Figure 5-1
: (root)

[[I [I I [I
ADER? SYSTem: ACQuire: BUS: CALibrate: CHANnel<n>: CLOCk:* DISK: DISPlay:
AER?

ATER? DATE AVERage: B1:TYPE OUTput BWLimit METHod CDIRectory CGRade:
AUToscale DEBug COUNt BIT<M> SKEW COMMonmode VERTical COPY LEVels?
CHANnel DSP COMPlete: BITS STATus? DIFFerential OFFSet DELete coLumn
PLACement ERRor? STATe CLEar SKEW RANGe DIRectory? CONNect
VERTical HEADer INTerpolate CLOCk DISPlay LOAD DATA?
BEEP LOCK MODE SLOPe AUTO MDIRectory GRATicule

BLANk LONGform POINts: DISPlay OFFSet DIGital<N>: PWD? LABel

CDISplay PRESet AUTO LABel RANGe SAVe:IMAGe LINE

DIGitize SETup SEGMented: READout SCALe DISPlay SAVe:JITTer PERSistence

MTEE TIME COUNT INPut LABel SAVe:MEAS ROW

DISDIG INDex ISIM SIZE SAVe:SETup SCOLor

ENABDIG TTAGs APPLy THReshold SAVe:WAVeform STRing

MTER SRATe: BANDwidth TEXT

MODel AUTO BWLimit

OPEE CONVolve —

OPER? DEConvole .

OVLRegister DELay HEAD: DELete AL

PDER? SPAN HEAD:SELect

PRINt Common Commands (IEEE 488.2) STATe SKEW

RECall:SETup OFFSet

RUN *CLS *IDN? *RCL *STB? PROBe: STYPe

i *ESE *LRN? *RST *TRG uati RANGe
SERial ATTenuation
SINGle *ESR? *OPC *SAV *TST? EADapter SCALe

* ra * X UNITs

STATus? OPT? *SRE *WAI ECOupling

SToP EXTernal: * CLOCk commands available only when

STORe: GAIN E2688A Clock Recovery package is installed.
JTTer OFFSet ** ISIM commands available only when the
SETup UNITs InfiniiSim software is installed.

TE\Q\IvAVeform IG[';IN ***Digital commands only available on MSO

. : models or DSO models with the MSO license
VIEW Installed.

I I I [| |
FUNCtion<N>: HARDcopy: HISTogram: MARKer: SELFtest: TIMebase:
AREA AXIS CURSor? CANCel POSition

ABSolute INTegrate DPRinter MODE MODE SCOPETEST RANGe

ADD INVert FACTors SCALe: TSTArt REFerence

AVERage LOWPass IMAGe SIZE TSTOp REFClock

COMMonmode MAGNify PRINters? WINDow: VSTArt ROLL:ENABLE

DIFF MAXimum DEFault VSTOp POD: SCALe

DISPlay MINimum SOURce X1Position VIEW

DIVide MULTiply LLIMit X2Positon DISPlay WINDow:

FFT: OFFSet RLIMit X1Ylsource THReshold DELgY
FREQuency RANGe BLIMit X2Y2source pggew POSition
REFerence SMOoth TLIMit XDelta? RANGe
RESolution? ~ SQRT Y1Postion SCALe
WINDow SQUare Y2Position

FFTMagnitude SUBTract YDELta?

FFTPhase VERSus

FUNCtion<N>? VERTical:

HIGHpass OFFSet

HORizontal: RANGe
POSition
RANGe

Y

Command Tree

54850cmda.cdr

6-6

Figure 5-1 (continued)

Y

Programming Conventions

The Command Tree

MTESt:

ALIGn
AlignFIT
AUTO
AVERage:
COUNt
DELete
ENABle
FOLDing***x*
BITS
HAMPIlitude
IMPedance
INVert
LAMPIlitude
LOAD
NREGions?
PROBe:
IMPedance?
RUMode:
SOFailure
SOURce
STIMe
STARt|STOP
TITLe?
TRIGger:
SOURce

y

Command Tree

AMASK:
CREate
SAVE|STORe
SOURce
UNITs
XDELta
YDELta

COUNt:

FAILures?
FUI?
FWAVeforms?
ur?
WAVeforms?

***x* MTESt:FOLDing command available only
when E2688A Clock Recovery package is

Installed.

[
WAVeform:

BANDpass?
BYTeorder
COMPlete?
COUNt?
COUPling?
DATA?
FORMat
POINts?
PREamble

SEGMented:

COUNt?

TTAG?
SOURce
TYPE?
VIEW
XDISplay

|
WMEMory<N>:

DISPlay
LOAD

SAVE

XOFFset
XRANge
YOFFset
YRANge

XINCrement?

XORigin?
XRANge?

XREFerence?

XUNits?
YDISplay?

YINCrement?

YORigin?
YRANge?

54850cmdb.cdr

YREFerence?

YUNits?

6-7

Figure 5-1 (continued)

|

Programming Conventions

The Command Tree

y

Command Tree

[
MEASure:

I I I I I I
AREA SENDvalid CGRAde: FFT: JITTer:* HISTogram:
BWIDth SETuptime*

CDRate SOURce CROSsing DFRequency HIStogram HITS
CLEar STATistics DCDistortion DMAGnitude MEASurement MAX
CTCDutycycle * TEDGe EHEight FREQuency SPECtrum: MEDian
CTClitter * THResholds EWIDth MAGnitude HORizontal: MEAN
CTCNwidth * TIEClock2* EWINdow PEAK1 POSition MIN
CTCPwidth * TIEData* JITTer PEAK2 RANGe M1S
DATarate* TIEFilter* QFACtor THReshold VERTical: M2S
DELTatime TMAX OFFset M3S
DUTYcycle TMIN RANGe PEAK
FALLtime TVOLT WINDow PP
FREQuency UNITinterval* STATistics STDDev
HOLDtime* VAMPIlitude TRENd:
NCJitter* VAVerage] SMOoth:
NWIDth VBASe POINts
OVERshoot VLOWer AeSolute VERTical:
PERiod VMAX OFFset
PHASe VMIDdle A RANGe
PREShoot VMIN STARE ent

TOPBase
PWIDth VPP STATe METHod
QUALifier<M> VRMS STOP ABSolute
RESults? VTIMe TYPE
RISetime VTOP
SCRatch VUPPer

I I
CLOCK: RID:* * Commands available only when E2681A Jitter package, EZJIT, or EZJIT Plus is
METHod: ALL? installed.

DEEMphasis BANDwidth

VERTical BERI

OFFSet EDGE

RANGe INTerpolate
PLENgth
SOURce
STATe 54850cmde.cdr
TJRIDJ]
UNITs

Figure 5-1 (continued)

*

Programming Conventions

The Command Tree

TRIGger:
I I I I I I |
AND: HOLDoff EDGE: GLITch: TIMeout: RUNT: WINDow:
ENABle HTHReshold COUPling POLarity CONDition POLarity CONDition
SOURce HYSTeresis SLOPe SOURce SOURce QUALified SOURce
LEVel SOURce WIDTh TIME SOURce TIME
LTHReshold TIME TPOInt
MODE
COMM
DELay
EDGE
GLITch -
PATTern MAX
PWIDth MIN
RUNT MODe
SHOLd
STATe
TIMeout
TRANSsition
TV
WINDow
SWEep
I I I I |
COMM: TV: DELay: PATTern: STATe:
BWIDth LINE ARM: CONDition CLOCk
ENCode MODE SOURce LOGic LOGic
LEVel SOURce SLOPe THReshold LTYPe
PATTern STANdard EDELay: LEVel SLOPe
POLarity UDTV: COUNt POD<N>
SOURce ENUMber SOURce
HSYNc SLOPe
HTIMe MODE:
PGTHan TDELay:
POLarity TIME
TRIGger:
SOURce
SLOPe
T | 1
PWIDth: SHOLd: TRANSsition:
DIRection CSOurce: DIRection
POLarity EDGE SOURce
SOURce DSOurce: TIME
TPOInt HoldTIMe TYPE
WIDTh MODE:
SETup
HOLD
SHOLd new54850cmdc.cdr
SetupTIMe

Command Tree

6-9

Programming Conventions
The Command Tree

Figure 5-1 (continued)

'

|
ISCan:

DELay
MEASurement
FAIL
LLIMit
MEASurement
ULIMit
MODE
NONMonotonic
EDGE
HYSTeresis
SOURce
RUNT
HYSteresis
LLEVel
SOURce
ULEVel
SERial
PATTern
SOURce
ZONE<N>
MODE
PLACement
SOURce
STATe

Command Tree

!
LTESt:

FAIL
LLIMit
TEST
RESults?
ULIMit

The SPRocessing commands
are only available if you have
the Serial Data Equalization
software installed.

54830cmdd.cdr

SPRocessing:
FFEQualizer
DISPlay
SOURce
NTAPs
TAP:
PLENGth
WIDTh
DELay
AUTomatic
BANDwidth
BWMode
TDELay
TDMode
DFEQualizer
STATe
SOURce
NTAPs
TAP
WIDTh
DELay
MAX
MIN
GAIN
UTARget
LTARget
AUTomatic

6-10

Example 1

Example 2

Example 3

Programming Conventions
The Command Tree

Tree Traversal Examples

The OUTPUT statements in the following examples are written using HP BASIC 5.0.
The quoted string is placed on the bus, followed by a carriage return and linefeed
(CRLF).

Consider the following command:
OUTPUT 707; " :CHANNEL1:RANGE 0.5;OFFSET 0"

The colon between CHANNEL1 and RANGE is necessary because
:CHANNELZ1:RANGE is a compound command. The semicolon between the
RANGE command and the OFFSET command is required to separate the two
commands or operations. The OFFSET command does not need :CHANNEL1
preceding it because the :CHANNEL1:RANGE command sets the parser to the
CHANNEL1 node in the tree.

Consider the following commands:
OUTPUT 707; " :TIMEBASE:REFERENCE CENTER; POSITION 0.00001"
or

OUTPUT 707; " :TIMEBASE:REFERENCE CENTER"
OUTPUT 707;":TIMEBASE:POSITION 0.00001"

In the first line of example 2, the “subsystem selector” is implied for the POSITION
command in the compound command.

A second way to send these commands is shown in the second part of the example.
Because the program message terminator places the parser back at the root of the
command tree, you must reselect TIMEBASE to re-enter the TIMEBASE node before
sending the POSITION command.

Consider the following command:
OUTPUT 707; " :TIMEBASE:REFERENCE CENTER; : CHANNEL1:OFFSET 0"

In this example, the leading colon before CHANNEL1 tells the parser to go back to
the root of the command tree. The parser can then recognize the
:CHANNEL1:OFFSET command and enter the correct node.

6-11

Programming Conventions
Infinity Representation

Infinity Representation

The representation for infinity for this oscilloscope is 9.99999E+37. This is also the
value returned when a measurement cannot be made.

Sequential and Overlapped Commands

IEEE 488.2 makes a distinction between sequential and overlapped commands.
Sequential commands finish their task before the execution of the next command
starts. Overlapped commands run concurrently. Commands following an overlapped
command may be started before the overlapped command is completed.

Response Generation

As defined by IEEE 488.2, query responses may be buffered for these reasons:
» When the query is parsed by the oscilloscope.

» When the computer addresses the oscilloscope to talk so that it may read the
response.

This oscilloscope buffers responses to a query when the query is parsed.

EOI

The EOI bus control line follows the IEEE 488.2 standard without exception.

6-12

Sample Programs

Sample Programs

Sample programs for the Infiniium-Series Oscilloscopes are shipped ona CD
ROM with the instrument. Each program demonstrates specific sets of
instructions.

This chapter shows you some of those functions, and describes the commands
being executed. Both C and BASIC examples are included.

The header file is:

 gpibdecl.h

The C examples include:
e init.c

e learnstr.c
 sicl_10.c

e natl_I10.c

The BASIC examples include:

* init.bas
e Irn_str.bas

The sample program listings are included at the end of this chapter.

7-2

Sample Programs
Sample Program Structure

Sample Program Structure

This chapter includes segments of both the C and BASIC sample programs.
Each program includes the basic functions of initializing the interface and
oscilloscope, capturing the data, and analyzing the data.

In general, both the C and BASIC sample programs typically contain the
following fundamental segments:

Segment Description

main program Defines global variables and constants, specifies include files,
and calls various functions.

initialize Initializes the GPIB or LAN interface and oscilloscope, and
sets up the oscilloscope and the ACQuire subsystem.

acquire_data Digitizes the waveform to capture data.
auto_measurements Performs simple parametric measurements.

transfer_data Brings waveform data and voltage/timing information (the
preamble) into the computer.

The BASIC programming language can be used to set up and transfer data to
your PC. However, because of the limitations of BASIC, it is not the best
language to use when transferring large amounts of data to your PC.

Sample Programs
Sample C Programs

Sample C Programs

Segments of the sample programs “init.c” and “gen_srg.c” are shown and described
in this chapter.

init.c - Initialization

/* init. c */

/* Command Order Example. This program demonstrates the order of commands
suggested for operation of the oscilloscope via GPIB.
This program initializes the oscilloscope, acquires data, performs
automatic measurements, and transfers and stores the data on the
PC as time/voltage pairs in a comma-separated file format useful
for spreadsheet applications. It assumes a SICL INTERFACE exists
as 'hpib7' and an oscilloscope at address 7.
It also requires a waveform connected to Channel 1.

See the README file on the demo disk for development and linking information.
*/

#include <stdio.h> /* location of: printf () */

#include <stdlib.h> /* location of: atof(), atoi() */

#include "gpibdecl.h" /* prototypes, global declarations, constants */
void initialize(void); /* initialize the oscilloscope */

void acquire_data(void); /* digitize waveform */

void auto_measurements(void); /* perform built-in automatic measurements */
void transfer_data(void); /* transfers waveform data from oscilloscope to PC */
int convert_data(int, int); /* converts data to time/voltage values */
void store_csv(FILE *, int); /* stores time/voltage pairs to */

/* comma-separated variable file format */

The include statements start the program. The file “gpibdecl.h” includes prototypes
and declarations that are necessary for the Infiniium Oscilloscope sample programs.
This segment of the sample program defines the functions, in order, that are used to
initialize the oscilloscope, digitize the data, perform measurements, transfer data from
the oscilloscope to the PC, convert the digitized data to time and voltage pairs, and
store the converted data in comma-separated variable file format.

See the following descriptions of the program segments.

7-4

Sample Programs
Sample C Programs

init.c - Global Definitions and Main Program

/* GLOBALS */

int count;

double xorg,xinc; /* values necessary for conversion of data */
double yorg,yinc;

int Acquired_length;

char data[MAX_LENGTH] ; /* data buffer */
double time_value[MAX LENGTH]; /* time value of data */
double volts[MAX_LENGTH] ; /* voltage value of data */

void main(void)

{

/* initialize interface and device sessions */

/* note: routine found in sicl_IO.c or natl_IO.c */

if(init_IO())
{

/* initialize the oscilloscope and interface and set up SRQ */
initialize();
acquire_data(); /* capture the data */

/* perform automated measurements on acquired data */
auto_measurements() ;

/* transfer waveform data to the PC from oscilloscope */

transfer_data();

close_IO0(); /* close interface and device sessions */
}

} /* end main() */

The init_IO routine initializes the oscilloscope and interface so that the oscilloscope
can capture data and perform measurements on the data. At the start of the program,
global symbols are defined which will be used to store and convert the digitized data
to time and voltage values.

7-5

Sample Programs
Sample C Programs

init.c - Initializing the Oscilloscope

/*

* Function name: initialize

* Parameters: none

* Return value: none

* Description: This routine initializes the oscilloscope for proper

* acquisition of data. The instrument is reset to a known state and the
* interface is cleared. System headers are turned off to allow faster

* throughput and immediate access to the data values requested by queries.
* The oscilloscope time base, channel, and trigger subsystems are then
* configured. Finally, the acquisition subsystem is initialized.

*/

void initialize(void)

{

write_TIO("*RST") ; /* reset oscilloscope - initialize to known state */
write_IO("*CLS"); /* clear status registers and output queue */
write_TO(":SYSTem:HEADer OFF"); /* turn off system headers */

/* initialize time base parameters to center reference, */
/* 2 ms full-scale (200 us/div), and 20 us delay */
write_IO(":TIMebase:REFerence CENTer;RANGe 2e-3;POSition 20e-6");

/* initialize Channell 1.6V full-scale (200 mv/div); offset-400mv */
write_IO(":CHANnell:RANGe 1.6;0FFSet-400e-3");

/* initialize trigger info: channell waveform on positive slope at 300mv */
write_IO(":TRIGger:EDGE:SOURce CHANnell;SLOPe POSitive");
write_IO(":TRIGger:LEVel CHANnell,-0.40");

/* initialize acquisition subsystem */
/* Real time acquisition - no averaging; memory depth 1,000,000 */
write_TIO(":ACQuire:MODE RTIMe;AVERage OFF;POINts 1000000") ;

} /* end initialize() */

7-6

b T T N

/

Sample Programs
Sample C Programs

init.c - Acquiring Data

Function name: acquire_data

Parameters: none

Return value: none

Description: This routine acquires data according to the current
instrument settings.

void acquire_data(void)

{
/*

*

* % % 3k X %

}

The root level :DIGitize command is recommended for acquisition of new

data. It will initialize data buffers, acquire new data, and ensure that
acquisition criteria are met before acquisition of data is stopped. The
captured data is then available for measurements, storage, or transfer

to a PC. Note that the display is automatically turned off by the
:DIGitize command and must be turned on to view the captured data.
write_IO(":DIGitize CHANnell");

write_IO(":CHANnell:DISPlay ON"); /* turn on channel 1 display which is */

/* turned off by the :DIGitize command */

/* end acquire_data() */

7-7

* % ok X X X X

~

*

Sample Programs
Sample C Programs

init.c - Making Automatic Measurements

Function name: auto_measurements
Parameters: none
Return value: none

Description: This routine performs automatic measurements of volts
peak-to-peak and frequency on the acquired data. It also demonstrates
two methods of error detection when using automatic measurements.

void auto_measurements(void)

{

b T N . T R N T T N

~

*

*

float frequency, vpp;
unsigned char vpp_str[l6];
unsigned char freq str[l6];
int bytes_read;

Error checking on automatic measurements can be done using one of two methods.
The first method requires that you turn on results in the Measurements
subsystem using the command :MEASure:SEND ON. When this is on, the oscilloscope
will return the measurement and a result indicator. The result flag is zero
if the measurement was successfully completed, otherwise a non-zero value is
returned which indicates why the measurement failed.

The second method simply requires that you check the return value of the
measurement. Any measurement not made successfully will return with the value
+9.999E37. This could indicate that either the measurement was unable to be
performed, or that insufficient waveform data was available to make the
measurement.

METHOD ONE - turn on results to indicate whether the measurement completed
successfully. Note that this requires transmission of extra data from the
oscilloscope.

write_IO(":MEASure:SENDvalid ON") ; /* turn results on */

/* query volts peak-to-peak channel 1 */
write_IO(":MEASure:VPP? CHANnell");

bytes_read = read IO (vpp_str,16L); /* read in value and result flag */

if (vpp_strl[bytes_read-2] != '0"')
printf ("Automated vpp measurement error with result %c\n",
vpp_str[bytes_read-2]);
else
printf ("VPP is %f\n", (float)atof (vpp_str));

7-8

/*

}

Sample Programs
Sample C Programs

write_IO(":MEASure:FREQuency? CHANnell"); /* frequency channel 1 */
bytes_read = read_IO(freqg str,16L); /* read in value and result flag */
if (freqg_str[bytes_read-2] != '0")

printf ("Automated frequency measurement error with result %c\n",
freq str[bytes_read-2]);
else
printf ("Frequency is %f\n", (float)atof (freqg str));

METHOD TWO - perform automated measurements and error checking with
:MEAS:RESULTS OFF

frequency =(float)0;
vpp = (float)oO;

turn off results */
write_TO(":MEASure:SENDvalid OFF") ;

write_IO(":MEASure:FREQuency? CHANnell"); /* frequency channel 1 */
bytes_read = read_IO(freq str,16L); /* read in value and result flag */
frequency = (float) atof(freqg str);

if (frequency > 9.99e37)
printf ("\nFrequency could not be measured.\n");
else
printf ("\nThe frequency of channel 1 is %f Hz.\n", frequency);

write_TO(":MEASure:VPP? CHANnell");
bytes_read = read IO(vpp_str,16L);

vpp = (float) atof (vpp_str);
if (vpp > 9.99e37)

printf ("Peak-to-peak voltage could not be measured.\n");
else

printf ("The voltage peak-to-peak is %f volts.\n", vpp);

/* end auto_measurements () */

7-9

b T T N

Sample Programs
Sample C Programs

init.c - Transferring Data to the PC

Function name: transfer_data

Parameters: none
Return value: none
Description:

waveform data to the PC.

void transfer_data(void)

{

int header_length;
char header_str[8];
FILE *fp;

int time_division=0;

char xinc_str[32],xorg_str[32];
char yinc_str[32],yorg _str[32];

int bytes_read;

write_IO(":WAVeform:SOURce CHANnell");

write_TIO(":WAVeform:FORMat BYTE") ;

write_IO(":WAVeform:XINCrement?") ;

bytes_read = read_IO(xinc_str,32L);
xinc = atof (xinc_str);

write_IO(":WAVeform:XORigin?") ;
bytes_read = read_IO(xorg_str,32L);
xorg = atof (xorg_str);

write_IO(":WAVeform:YINCrement?") ;
bytes_read = read_ IO (yinc_str,32L);
vinc = atof (yinc_str);

write_IO(":WAVeform:YORigin?") ;
bytes_read = read_IO(yorg_str,32L);
yvorg = atof (yorg_str);

write_IO(":WAVeform:DATA?") ;
bytes_read = read_IO(data,lL);
while(datal[0] != '#')

bytes_read = read_IO(data,lL);

This routine transfers the waveform conversion factors and

/* waveform data source channel 1 */
/* setup transfer format */

/* request values to allow
interpretation of raw data */

/* request waveform data */
/* fine the # character */

/* fine the # character */

7-10

}

Sample Programs
Sample C Programs

bytes_read = read_ IO (header_str,1L); /* input byte counter */
header_length = atoi (header_str);

/* read number of points to download */
bytes_read = read IO (header_str, (long)header_length) ;
Acquired_length = atoi (header_str); /* number of bytes */

bytes_read = 0;

fp = fopen("pairs.csv","wb"); /* open file in binary mode - clear file
if already exists */

while((bytes_read + MAX_LENGTH) < Acquired_length)
{
bytes_read += read_IO(data,MAX LENGTH); /* input waveform data */
/* Convert data to voltage and time */
time_division = convert_data(time_division, MAX_ LENGTH) ;
store_csv (fp,MAX_LENGTH) ; /* Store data to disk */
}

/* input last of waveform data */

bytes_read = read_IO(data, (Acquired_length-bytes_read+1l));

/* Convert data to voltage and time */

time_division = convert_data(time_division, (bytes_read-1));
store_csv (fp, (bytes_read-1)); /* Store data to disk */

fclose(fp); /* close file */

/* end transfer_data() */

An example header resembles the following when the information is stripped off:
#510225
The left most “5” defines the number of digits that follow (10225). The number

“10225” is the number of points in the waveform. The information is stripped off of
the header to get the number of data bytes that need to be read from the oscilloscope.

7-11

*

* 0% % ok ok 3k X ok S

~

Sample Programs
Sample C Programs

init.c - Converting Waveform Data

Function name: convert_data
Parameters: int time_division which is the index value of the next time

value calculated.
int length number of voltage and time values to calculate.

Return value: int time_division which contains the next time index.
Description: This routine converts the waveform data to time/voltage
information using the values that describe the waveform. These values are
stored in global arrays for use by other routines.

int convert_data(int time_division, int length)

{

int 1i;

for

{

(1 = 0; i < Acquired_length; i++)

/* calculate time info */

time_value[i] =(time_division * xinc) + xorg;
/* calculate volt info */
volts[i] = (datali] * yinc) + yorg;

time_division++;

return time_division;
} /* end convert_data() */

The data values are returned as digitized samples (sometimes called quantization
levels or g-levels). These data values must be converted into voltage and time values.

7-12

*

L T N

~

Sample Programs
Sample C Programs

init.c - Storing Waveform Time and Voltage Information

Function name: store_csv

Parameters: none

Return value: none

Description: This routine stores the time and voltage information about
the waveform as time/voltage pairs in a comma-separated variable file
format.

void store_csv(FILE *fp, int length)

{

int 1i;
if (fp != NULL)
{
for (i = 0; i < length; i++)
{
/* write time,volt pairs to file */
fprintf(fp, "%e,%$1lf\n",time_valuel[i],volts[i]);
}
}
else

printf ("Unable to open file 'pairs.csv'\n");

/* end store_csv() */

The time and voltage information of the waveform is stored with the time stored first,
followed by a comma, and the voltage stored second.

7-13

Sample Programs
Listings of the Sample Programs

Listings of the Sample Programs

Listings of the C sample programs in this section include:

» gpibdecl.h
 learnstr.c
» sicl_IO.c
» natl_I0.c

Listings of the BASIC sample programs in this section include:

* init.bas
 Irn_str.bas

7-14

Sample Programs
gpibdecl.h Sample Header

gpibdecl.h Sample Header

/* gpibdecl.h */

/* This file includes necessary prototypes and declarations for the
example programs for the Agilent oscilloscope */

/* User must indicate which GPIB card (Agilent or National) is being used or
if the LAN interface is being used.
Also, if using a National card, indicate which version of windows
(WIN31 or WIN95) is being used */

#define LAN /* Uncomment if using LAN interface */
#define AGILENT /* Uncomment if using LAN or Agilent interface card */
// #define NATL /* Uncomment if using National interface card */

/* #define WIN31 */ /* For National card ONLY - select windows version */
#define WIN95

#ifdef WINO9S

#include <windows.h> /* include file for Windows 95 */
telse

#include <windecl.h> /* include file for Windows 3.1 */
#endif

#ifdef AGILENT

#include "d:\siclnt\c\sicl.h" /* Change the path for the sicl.h location */
telse

#include "decl-32.h"
#endif

#define CME 32
#define EXE 16
#define DDE 8
#define QYE 4

#define SRQ_BIT 64
#define MAX_LRNSTR 40000
#define MAX_LENGTH 262144
#define MAX_INT 4192

#ifdef AGILENT
#ifdef LAN
#define INTERFACE "lan[130.29.71.82]:hpib7,7"
#else

7-15

Sample Programs
gpibdecl.h Sample Header

#define DEVICE_ADDR "hpib7,7"
#define INTERFACE "hpib7"
#endif
#else
#define INTERFACE "gpibO"

#define board_index 0

#define prim_addr 7

#define second_addr 0

#define timeout 13

#define eoi_mode 1

#define eos_mode 0
#endif

/* GLOBALS */
#ifdef AGILENT

INST bus;

INST scope;
#else

int bus;

int scope;
#endif

#define TRUE 1
#define FALSE 0

extern int srqg asserted;

/* GPIB prototypes */

void init_TIO(void);

void write_IO(char*);

void write_lrnstr(char*, long);
int read_IO(char*, unsigned long) ;
unsigned char read_status();

void close_IO(void);

void gpiberr(void);

#ifdef AGILENT

extern void SICLCALLBACK srqg_agilent(INST);
#else

extern int _ stdcall srg national(int, int, int,
#endif

long,

void*

)

7-16

Sample Programs
learnstr.c Sample Program

learnstr.c Sample Program

/* learnstr.c */

/*

* This example program initializes the oscilloscope, runs autoscale to

* acquire a waveform, queries for the learnstring, and stores the learnstring
* to disk. It then allows the user to change the setup, then restores the

* original learnstring. It assumes that a waveform is attached to the

* oscilloscope.

*/

#include <stdio.h> /* location of: printf(), fopen(), fclose(),

fwrite(),getchar */

#include "gpibdecl.h"

void initialize(void);
void store_learnstring(void);
void change_setup(void);
void get_learnstring(void);
void main(void)
{
if(init_IO()) /* initialize device and interface */
{ /* Note: routine found in sicl_IO.c or natl_IO.c */

}
} o/

/* initialize the oscilloscope and interface, and set up SRQ */
initialize();

store_learnstring(); /* request learnstring and store */
change_setup(); /* request user to change setup */
get_learnstring(); /* restore learnstring */

close_IO0(); /* close device and interface sessions */

/* Note: routine found in sicl_TIO.c or natl_IO.c */

end main */

7-17

*

EE I T T T N

~

Sample Programs
learnstr.c Sample Program

Function name: initialize

Parameters: none

Return value: none

Description: This routine initializes the oscilloscope for proper
acquisition of data. The instrument is reset to a known state and the
interface is cleared. System headers are turned off to allow faster
throughput and immediate access to the data values requested by queries.
Autoscale is performed to acquire a waveform. The waveform is then
digitized, and the channel display is turned on following the acquisition.

void initialize(void)

{

write_IO("*RST"); /* reset oscilloscope - initialize to known state */
write_IO("*CLS"); /* clear status registers and output queue */
write_IO(":SYSTem:HEADer ON") ; /* turn on system headers */

/* initialize Timebase parameters to center reference, 2 ms
full-scale (200 us/div), and 20 us delay */
write_IO(":TIMebase:REFerence CENTer;RANGe 5e-3;POSition 20e-6");

/* initialize Channell 1.6v full-scale (200 mv/div) ;
offset-400mv */
write_TO(":CHANnell:RANGe 1.6;0FFSet-400e-3");

/* initialize trigger info: channell waveform on positive slope
at 300mv */

write_IO(":TRIGger:EDGE:SOURce CHANnell;SLOPe POSitive");

write_IO(":TRIGger:LEVel CHANnell,-0.40");

/* initialize acquisition subsystem */
/* Real time acquisition - no averaging; record length 4096 */
write_IO(":ACQuire:MODE RTIMe;AVERage OFF;POINts 4096");

} /* end initialize() */

7-18

Sample Programs
learnstr.c Sample Program

/*

* Function name: store_learnstring

* Parameters: none

* Return value: none

* Description: This routine requests the system setup known as a

* learnstring. The learnstring is read from the oscilloscope and stored in a file
* called Learn2.

*/

void store_learnstring(void)

{
FILE *fp;
unsigned char setup[MAX_LRNSTR]={0};
int actualcnt = 0;

write_IO(":SYSTem:SETup?") ; /* request learnstring */
actualcnt = read_IO(setup, MAX_LRNSTR) ;

fp = fopen("learn2", "wb");

if (fp != NULL)

{
fwrite(setup,sizeof (unsigned char), (int)actualcnt, fp);
printf ("Learn string stored in file Learn2\n");

fclose(fp);
}

else
printf ("Error in file open\n");

}/* end store_learnstring */

*

Function name: change_setup

Parameters: none

Return value: none

Description: This routine places the oscilloscope into local mode to allow the
customer to change the system setup.

b . T N

~

void change_setup(void)

{
printf ("Please adjust setup and press ENTER to continue.\n");
getchar () ;

} /* end change_setup */

7-19

Sample Programs
learnstr.c Sample Program

*

Function name: get_learnstring

Parameters: none

Return value: none

Description: This routine retrieves the system setup known as a
learnstring from a disk file called Learn2. It then restores

the system setup to the oscilloscope.

* % X X o

~

void get_learnstring(void)

{

FILE *fp;
unsigned char setup[MAX_LRNSTR];
unsigned long count = 0;

fp = fopen("learn2",'"rb");

if (fp != NULL)

{
count = fread(setup,sizeof (unsigned char),MAX_LRNSTR, fp) ;
fclose(fp);

}

write_lrnstr (setup, count) ; /* send learnstring */

write_TO(":RUN") ;

}/* end get_learnstring */

7-20

Sample Programs
sicl_10O.c Sample Program

sicl_10.c Sample Program

/* sicl_TIO.c */
#include <stdio.h> /* location of: printf() */
#include <string.h> /* location of: strlen() */

#include "gpibdecl.h"

/* This file contains IO and initialization routines for the SICL libraries. */

/*

* Function name: init_IO

* Parameters: none

* Return value: int indicating success or failure of initialization.

* Description: This routine initializes the SICL environment. It sets up
* error handling, opens both an interface and device session, sets timeout
* wvalues, clears the interface by pulsing IFC, and clears the instrument

* by performing a Selected Device Clear.

*

int init_TO()
{

ionerror (I_ERROR_EXIT) ; /* set-up interface error handling */

/* open interface session for verifying SRQ line */
bus = iopen(INTERFACE);
if (bus == 0)
{
printf ("Bus session invalid\n");
return FALSE;

}
itimeout (bus, 20000); /* set bus timeout to 20 sec */
iclear(bus); /* clear the interface - pulse IFC */

7-21

Sample Programs
sicl_10O.c Sample Program

#ifdef LAN
scope = bus;
#else
scope = iopen(DEVICE_ADDR) ; /* open the scope device session */
if (scope == 0)
{

printf("Scope session invalid\n");
return FALSE;

}

itimeout (scope, 20000); /* set device timeout to 20 sec */

iclear(scope); /* perform Selected Device Clear on oscilloscope */
#endif

return TRUE;
} /* end init_IO */

7-22

Sample Programs
sicl_10O.c Sample Program

/*

* Function name: write_IO

* Parameters: char *buffer which is a pointer to the character string to be
* output; unsigned long length which is the length of the string to be output
* Return value: none

* Description: This routine outputs strings to the oscilloscope device session
* using the unformatted I/O SICL commands.

*/

void write_IO(void *buffer)
{
unsigned long actualcnt;
unsigned long length;
int send_end = 1;
length = strlen(buffer);
iwrite(scope, buffer, length, send_end, &actualcnt);

} /* end write_IO */

/*

* Function name: write_lrnstr

* Parameters: char *buffer which is a pointer to the character string to be
* output; long length which is the length of the string to be output

* Return value: none

* Description: This routine outputs a learnstring to the oscilloscope device
* gession using the unformatted I/O SICL commands.

*/

void write_lrnstr(void *buffer, long length)

{
unsigned long actualcnt;
int send_end = 1;

iwrite(scope, buffer, (unsigned long) length,
send_end, &actualcnt);

} /* end write_lrnstr() */

7-23

EE R T N
*

~

Sample Programs
sicl_10O.c Sample Program

Function name: read_IO

Parameters: char *buffer which is a pointer to the character string to be
input; unsigned long length which indicates the max length of the string to
be input

Return value: integer which indicates the actual number of bytes read

Description: This routine inputs strings from the oscilloscope device session

using SICL commands.

int read_IO(void *buffer,unsigned long length)

{

-

X % X X X X

int reason;
unsigned long actualcnt;

iread(scope,buffer, length, &reason, &actualcnt) ;

return((int) actualcnt);

Function name: check_SRQ

Parameters: none

Return value: integer indicating if bus SRQ line was asserted
Description: This routine checks for the status of SRQ on the bus and
returns a value to indicate the status.

int check_SRQ(void)

{

int srg asserted;

/* check for SRQ line status */
igpibbusstatus (bus, I_GPIB_BUS_SRQ, &srqg _asserted);

return(srqg_asserted);

} /* end check_SRQ() */

7-24

Sample Programs
sicl_10O.c Sample Program

/*

* Function name: read_status

* Parameters: none

* Return value: unsigned char indicating the value of status byte

* Description: This routine reads the oscilloscope status byte and returns
* the status.

*/

unsigned char read_status(void)

{

unsigned char statusbyte;

/* Always read the status byte from instrument */

/* NOTE: ireadstb uses serial poll to read status byte - this
should clear bit 6 to allow another SRQ. */

ireadstb(scope, &statusbyte);
return(statusbyte);

} /* end read_status() */

*

Function name: close_IO

Parameters: none

Return value: none

Description: This routine closes device and interface sessions for the
SICL environment and calls the routine _siclcleanup which de-allocates
resources used by the SICL environment.

% % ok X ok X

~

void close_IO(void)

{

iclose(scope); /* close device session */
iclose(bus); /* close interface session */
_siclcleanup(); /* required for 16-bit applications */

} /* end close_SICL() */

7-25

Sample Programs
natl_lO.c Sample Program

natl_10.c Sample Program

/* natl_TIO.c */

#include <stdio.h> /* location of: printf() */
#include <string.h> /* location of: strlen() */
#include "gpibdecl.h"

/* This file contains IO and initialization routines for the NI488.2 commands. */
/*

* Function name: gpiberr
* Parameters: char* - string describing error
* Return value: none

* Description: This routine outputs error descriptions to an error file.
*/

void gpiberr(char *buffer)

{

printf ("Error string: %s\n",buffer);

} /* end gpiberr () */

*

Function name: init_IO

Parameters: none

Return value: none

Description: This routine initializes the NI environment. It sets up error
handling, opens both an interface and device session, sets timeout values
clears the interface by pulsing IFC, and clears the instrument by performing
a Selected Device Clear.

% o ok X X X X

~

void init_IO(void)
{
bus = ibfind(INTERFACE) ; /* open and initialize GPIB board */
if(ibsta & ERR)
gpiberr ("ibfind error");

ibconfig(bus, IbcAUTOPOLL, 0); /* turn off autopolling */
ibsic(bus); /* clear interface - pulse IFC */
if(ibsta & ERR)
{
gpiberr("ibsic error");
}

7-26

* % ok ko ok

Sample Programs
natl_l1O.c Sample Program

/* open device session */

scope = ibdev(board_index, prim_addr, second_addr, timeout,
eoi_mode, eos_mode);

if(ibsta & ERR)

{
gpiberr("ibdev error");
}
ibclr(scope); /* clear the device(scope) */

if(ibsta & ERR)
{
gpiberr ("ibclr error");

}

/* end init_IO */

Function name: write_IO
Parameters: void *buffer which is a pointer to the character string
to be output
Return value: none
Description: This routine outputs strings to the oscilloscope device session.

void write_IO(void *buffer)

long length;
length = strlen(buffer);

ibwrt (scope, buffer, (long) length);
if (ibsta & ERR)
{

gpiberr("ibwrt error");

}

} /* end write_IO() */

7-27

Sample Programs
natl_lO.c Sample Program

/*

* Function name: write_lrnstr

* Parameters: void *buffer which is a pointer to the character string to

* Dbe output; length which is the length of the string to be output

* Return value: none

* Description: This routine outputs a learnstring to the oscilloscope device
* gession.

*/

void write_lrnstr(void *buffer, long length)

{

ibwrt (scope, buffer, (long) length);
if (ibsta & ERR)

{
gpiberr("ibwrt error");

}
} /* end write_lrnstr() */
/*
* Function name: read_TIO
* Parameters: char *buffer which is a pointer to the character string to be
* input; unsigned long length which indicates the max length of the string
* to be input
* Return value: integer which indicates the actual number of bytes read
* Description: This routine inputs strings from the oscilloscope device session.
*/

int read_IO(void *buffer,unsigned long length)
{
ibrd(scope, buffer, (long)length);

return(ibcntl);

} /* end read_IO() */

7-28

Sample Programs
natl_l1O.c Sample Program

/*

* Function name: read_status

* Parameters: none

* Return value: unsigned char indicating the value of status byte

* Description: This routine reads the oscilloscope status byte and returns
* the status.

*/

unsigned char read_status(void)
{
unsigned char statusbyte;
/* Always read the status byte from instrument */

ibrsp(scope, &statusbyte);

return(statusbyte);

} /* end read_status() */
/*

* Function name: close_IO
* Parameters: none

* Return value: none
* Description: This routine closes device session.

void close_IO(void)
{

ibonl(scope,0); /* close device session */

} /* end close_IO() */

7-29

Sample Programs
init.bas Sample Program

init.bas Sample Program

The BASIC programming language can be used to set up and transfer data to
your PC. However, because of the limitations of BASIC, it is not the best
language to use when transferring large amounts of data to your PC.

10 1file: init

20 !

30 !

40 ! This program demonstrates the order of commands suggested for
operation of

50 ! the oscilloscope via GPIB. This program initializes the oscilloscope,
acquires

60 ! data, performs automatic measurements, and transfers and stores the
data on the

70 ! PC as time/voltage pairs in a comma-separated file format useful for
spreadsheet

80 ! applications. It assumes an interface card at interface select code 7, an
90 ! oscilloscope at address 7, and the cal waveform connected to Channel 1.
100 !

110 !

120 !

130 COM /Io/@Scope,@Path,Interface

140 COM /Raw_data/ INTEGER Data(4095)

150 COM /Converted_data/ REAL Time (4095),Volts (4095)
160 COM /Variables/ REAL Xinc,Xorg,Yinc, Yorg
170 COM /Variables/ INTEGER Record_length
180 !

190 !

200 CALL Initialize

210 CALL Acquire_data

220 CALL Auto_msmts

230 CALL Transfer_data

240 CALL Convert_data

250 CALL Store_csv

260 CALL Close

270 END

280 !

7-30

Sample Programs
init.bas Sample Program

rrrnl

BEGIN SUBPROGRAMS

| T T A A T A A A O A |

350 !

360 !

370 ! Subprogram name: Initialize

380 ! Parameters: none

390 ! Return value: none

400 ! Description: This routine initializes the interface and the

oscilloscope. The instrument

410 is reset to a known state and the interface is cleared. System headers

420 ! are turned off to allow faster throughput and immediate access to the

430 ! data values requested by the queries. The oscilloscope time base,

440 ! channel, and trigger subsystems are then configured. Finally, the

450 ! acquisition subsystem is initialized.

460 !

470 !

480 SUB Initialize

490 COM /Io/@Scope,@Path, Interface

500 COM /Variables/ REAL Xinc,Xorg,Yinc, Yorg

510 COM /Variables/ INTEGER Record_length

520 Interface=7

530 ASSIGN @Scope TO 707

540 RESET Interface

550 CLEAR @Scope

560 OUTPUT @Scope; "*RST"

570 OUTPUT @Scope; "*CLS"

580 OUTPUT @Scope; ":S5YSTem:HEADer OFF"

590 'Tnitialize Timebase: center reference, 2 ms full-scale (200 us/div),
20 us delay

600 OUTPUT @Scope; " :TIMebase:REFerence CENTer;RANGe 2e-3;POSition 20e-6"

610 ! Initialize Channell: 1.6V full-scale (200mv/div),-415mv offset

620 OUTPUT @Scope; " :CHANnell:RANGe 1.6;0FFSet-415e-3"

630 !Tnitialize Trigger: Edge trigger, channell source at-415mv

640 OUTPUT @Scope; " :TRIGger :EDGE: SOURce CHANnell;SLOPe POSitive"

650 OUTPUT @Scope; " :TRIGger:LEVel CHANnell,-0.415"

660 ! Initialize acquisition subsystem

665 ! Real time acquisition, Averaging off, memory depth 4096

670 OUTPUT @Scope; ":ACQuire:MODE RTIMe; AVERage OFF;POINts 4096"

680 Record_length=4096

690 SUBEND

7-31

Sample Programs
init.bas Sample Program

700 !
710 !
720

rrrnd

750 ! Subprogram name: Acquire_data

760 ! Parameters: none

770 ! Return value: none

780 ! Description: This routine acquires data according to the current
instrument

790 ! setting. It uses the root level :DIGitize command.
This command

800 ! is recommended for acquisition of new data because
it will initialize

810 ! the data buffers, acquire new data, and ensure that
acquisition

820 ! criteria are met before acquisition of data is
stopped. The captured

830 ! data is then available for measurements, storage,
or transfer to a

840 ! PC. Note that the display is automatically turned
off by the :DIGitize

850 ! command and must be turned on to view the captured data.
860 !

870 !

880 SUB Acquire_data

890 COM /Io/@Scope,@Path, Interface

900 OUTPUT @Scope; " :DIGitize CHANnell"

910 OUTPUT @Scope; " :CHANnell:DISPlay ON"

920 SUBEND

930 !

940 !

950

rrrnd

980 ! Subprogram name: Auto_msmts
990 ! Parameters: none
1000 ! Return value: none

1010 ! Description: This routine performs automatic measurements of
volts peak-to-peak

1020 ! and frequency on the acquired data. It also
demonstrates two methods

1030 ! of error detection when using automatic measurements.

7-32

Sample Programs
init.bas Sample Program

1040 !

1050 !

1060 SUB Auto_msmts

1070 COM /Io/@Scope,@Path, Interface

1080 REAL Freq, Vpp

1090 DIM Vpp_str$[64]

1100 DIM Freqg str$[64]

1110 Bytes_read=0

1120 !

1130 ! Error checking on automatic measurements can be done using one of
two methods.

1140 The first method requires that you turn on results in the Measurement
subsystem

1150 ! using the command ":MEASure:SEND ON". When this is on, the
oscilloscope will return the

1160 ! measurement and a result indicator. The result flag is zero if
the measurement

1170 was successfully completed, otherwise a non-zero value is returned
which indicates

1180 ! why the measurement failed. See the Programmer's Manual for
descriptions of result

1190 ! indicators. The second method simply requires that you check the
return value of

1200 the measurement. Any measurement not made successfully will return
with the value

1210 ! +9.999e37. This could indicate that either the measurement was
unable to be

1220 ! performed or that insufficient waveform data was available to make
the measurement.

1230 !

1240 ! METHOD ONE

1250 !

1260 OUTPUT @Scope; ":MEASure:SENDvalid ON" lturn on results
1270 OUTPUT @Scope; " :MEASure:VPP? CHANnell" 'Query volts peak-to-peak
1280 ENTER @Scope;Vpp_str$

1290 Bytes_read=LEN (Vpp_str$) 'Find length of string
1300 CLEAR SCREEN

1310 IF Vpp_str$[Bytes_read;1]="0" THEN !'Check result value
1320 PRINT

1330 PRINT "VPP is ";VAL (Vpp_str$[1l,Bytes_read-11])

1340 PRINT

1350 ELSE

1360 PRINT

1370 PRINT "Automated vpp measurement error with result

", Vpp_str$[Bytes_read; 1]

1380 PRINT

1390 END IF

1400 !

7-33

1410 !
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510

Sample Programs
init.bas Sample Program

OUTPUT @Scope; " :MEASure:FREQuency? CHANnell" 'Query frequency
ENTER @Scope;Freq str$
Bytes_read=LEN (Freqg str$) 'Find string length
IF Freq str$[Bytes_read;1]="0" THEN IDetermine result value
PRINT
PRINT "Frequency 1is ";VAL(Freq str$[1l,Bytes_read-1])
PRINT
ELSE
PRINT

PRINT "Automated frequency measurement error with result

";Freq_str$[Bytes_read;1]

1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800

PRINT
END IF

METHOD TWO

OUTPUT @Scope; ":MEASure:SENDvalid OFF" lturn off results
OUTPUT @Scope; " :MEASure:VPP? CHANnell" 'Query volts peak-to-peak
ENTER @Scope; Vpp
IF Vpp<9.99E+37 THEN
PRINT
PRINT "VPP is ";Vpp
PRINT
ELSE
PRINT
PRINT "Automated vpp measurement error ";Vpp
PRINT
END IF
OUTPUT @Scope; " :MEASure:FREQuency? CHANnell"
ENTER @Scope;Freq
IF Freg<9.99E+37 THEN
PRINT
PRINT "Frequency is ";Freq
PRINT
ELSE
PRINT
PRINT "Automated frequency measurement error";Freqg
PRINT
END IF

1810 SUBEND

1820 !
1830 !
1840

rrrnd

7-34

Sample Programs
init.bas Sample Program

1860 !

1870 ! Subprogram name: Transfer_ data

1880 ! Parameters: none

1890 ! Return value: none

1900 ! Description: This routine transfers the waveform data and conversion
factors to

1910 ! to PC.

1920 !

1930 !

1940 SUB Transfer_ data

1950 COM /Io/@Scope,@Path, Interface

1960 COM /Raw_data/ INTEGER Data(4095)

1970 COM /Converted_data/ REAL Time (4095),Volts (4095)

1980 COM /Variables/ REAL Xinc,Xorg,Yinc, Yorg

1990 COM /Variables/ INTEGER Record_length

2000 ! define waveform data source and format
2010 OUTPUT @Scope; " :WAVeform:SOURce CHANnell"

2020 OUTPUT @Scope; " :WAVeform:FORMat WORD"

2030 ! request values needed to convert raw data to real
2040 OUTPUT @Scope; " :WAVeform:XINCrement?"

2050 ENTER @Scope;Xinc

2060 OUTPUT @Scope; ":WAVeform:XORigin?"

2070 ENTER @Scope;Xorg

2100 OUTPUT @Scope; " :WAVeform: YINCrement?"

2110 ENTER @Scope;Yinc

2120 OUTPUT @Scope; ":WAVeform:YORigin?"

2130 ENTER @Scope;Yorg

2160 !

2170 ! request data

2180 OUTPUT @Scope; " :WAVeform:DATA?"

2190 ENTER @Scope USING "#,1A";First_chrs$ lignore leading #

2200 ENTER @Scope USING "#,1D";Header_length linput number of bytes in

header value

2210 ENTER @Scope USING "#, "&VALS (Header_length) &"D";Record_length 'Record

length in bytes

2220 Record_length=Record_length/2 IRecord length in words

2230 ENTER @Scope USING "#,W";Data(*)

2240 ENTER @Scope USING "#,A";Term$ lEnter terminating character

2250 !

2260 SUBEND

2270 !

2280 !

2290
rtrrnd
rrrrrrrrrnd

2300 !

2310 !

2320 ! Subprogram name: Convert_data

7-35

Sample Programs
init.bas Sample Program

2330 ! Parameters: none

2340 ! Return value: none

2350 ! Description: This routine converts the waveform data to time/
voltage information

2360 ! using the values Xinc, Xorg, Yinc, and Yorg used to describe
2370 ! the raw waveform data.

2380 !

2390 !

2400 SUB Convert_data

2410 COM /Io/@Scope,@Path,Interface

2420 COM /Raw_data/ INTEGER Data (4095)

2430 COM /Converted_data/ REAL Time (4095),Volts (4095)
2440 COM /Variables/ REAL Xinc,Xorg,Yinc,Yorg

2450 COM /Variables/ INTEGER Record_length

2460 !

2470 FOR I=0 TO Record_length-1

2480 Time (I)=(I-*Xinc)+Xorg

2490 Volts (I)=(Data(I)*Yinc)+Yorg

2500 NEXT I
2510 SUBEND
2520 !

2530 !

2540

rrrnd

Subprogram name: Store_csv

Parameters: none

Return value: none

2600 ! Description: This routine stores the time and voltage information
about the waveform

2610 ! as time/voltage pairs in a comma-separated variable
file format.

2620 !

2630 !

2640 SUB Store_csv

2650 COM /Io/@Scope,@Path,Interface

2660 COM /Converted_data/ REAL Time (4095),Volts(4095)
2670 COM /Variables/ REAL Xinc,Xorg,Yinc, Yorg

2680 COM /Variables/ INTEGER Record_length

2690 ICreate a file to store pairs in

2700 ON ERROR GOTO Cont

2710 PURGE "Pairs.csv"

2720 Cont: OFF ERROR

2730 CREATE "Pairs.csv",Max_length

2740 ASSIGN @Path TO "Pairs.csv";FORMAT ON

2750 'Output data to file

7-36

Sample Programs
init.bas Sample Program

2760 FOR I=0 TO Record_length-1

2770 OUTPUT @Path;Time(I),Volts(I)
2780 NEXT T

2790 SUBEND

2800 !

2810 !

rrrnd

]
! Subprogram name: Close
! Parameters: none
2870 ! Return value: none
! Description: This routine closes the IO paths.
|
]

2910 SUB Close
2920 COM /Io/@Scope,@Path, Interface

2940 RESET Interface
2950 ASSIGN @Path TO *
2960 SUBEND

7-37

Sample Programs
Irn_str.bas Sample Program

10
20
30

Irn_str.bas Sample Program

The BASIC programming language can be used to set up and transfer data to
your PC. However, because of the limitations of BASIC, it is not the best
language to use when transferring large amounts of data to your PC.

'FILE: lrn_str.bas
1

!'THIS PROGRAM WILL INITIALIZE THE OSCILLOSCOPE, AUTOSCALE, AND DIGITIZE

THE WAVEFORM

40
50
60
70

!INFORMATION. IT WILL THEN QUERY THE INSTRUMENT FOR THE LEARNSTRING AND WILL
!SAVE THE INFORMATION TO A FILE. THE PROGRAM WILL THEN PROMPT YOU TO CHANGE
!THE SETUP THEN RESTORE THE ORIGINAL LEARNSTRING CONFIGURATION. IT ASSUMES

!AN OSCILLOSCOPE at ADDRESS 7, GPIB INTERFACE at 7, AND THE CAL waveform

ATTACHED TO

80

90

100
110
120
130
140
150
160
170
180
190
200
210

290

|CHANNEL 1.

1

!

COM /Io/@Scope,@Path,Interface
COM /Variables/Max_length
CALL Initialize

CALL Store_lrnstr

CALL Change_setup

CALL Get_lrnstr

CALL Close

END

!

1

| T A A A A A A A A I O |

! BEGIN SUBROUTINES

| 1 A A A A A A A A A A I O |

Subprogram name: Initialize

Parameters: none

Return value: none

Description: This routine initializes the path descriptions and

resets the

300

! interface and the oscilloscope. It performs an autoscale

7-38

Sample Programs
Irn_str.bas Sample Program

on the waveform,

310 ! acquires the data on channel 1, and turns on the display.
320 ! NOTE: This routine also turns on system headers. This allows the
330 ! string ":SYSTEM:SETUP " to be returned with the
learnstring so the

340 ! return string is in the proper format.

350 !

360 SUB Initialize

370 COM /Io/@Scope, @Path, Interface

380 COM /Variables/Max_length

390 Max_length=40000

400 ASSIGN @Scope TO 707

410 Interface=7

420 RESET Interface

430 CLEAR @Scope

440 OUTPUT @Scope; "*RST"

450 OUTPUT @Scope; "*CLS"

460 OUTPUT @Scope; " :SYSTem:HEADer ON"

470 OUTPUT @Scope; ":AUToscale"

480 SUBEND

490 !

500 !

510
rtrrnd
[

520 !

530 !

540 ! Subprogram name: Store_lrnstr

550 ! Parameters: none

560 ! Return value: none

570 ! Description: This routine creates a file in which to store the
learnstring

580 ! configuration (Filename:Lrn_strg). It requests the learnstring
590 ! and inputs the configuration to the PC. Finally, it stores the
600 ! configuration to the file.

610 !

620 SUB Store_lrnstr

630 COM /Io/@Scope,@Path, Interface

640 COM /Variables/Max_length

650 ON ERROR GOTO Cont

660 PURGE "Lrn_strg"

670 Cont: OFF ERROR

680 CREATE BDAT "Lrn_strg",1,40000

690 DIM Setup$[40000]

700 ASSIGN @Path TO "Lrn_strg"

710 OUTPUT @Scope; ":SYSTem: SETup?"

720 ENTER @Scope USING "-K";Setup$

730 OUTPUT @Path,1l;Setup$

7-39

Sample Programs
Irn_str.bas Sample Program

740 CLEAR SCREEN

750 PRINT "Learn string stored in file: Lrn_strg"
760 SUBEND

770 !

780 !

790

L O O O O O
rrrrrrrnd

800 !

810 Subprogram name: Change_setup

820 Parameters: none

830 Return value: none

1
1
1
840 ! Description: This subprogram requests that the user change the
1
1
1

850 oscilloscope setup, then press a key to continue.
860

870 !

880 SUB Change_setup

890 COM /Io/@Scope,@Path, Interface

900

910 PRINT

920 PRINT "Please adjust setup and press Continue to resume."

930 PAUSE

940 SUBEND

950 !

960 !

970

L O O O O O
rrrrrrrnd

980 !

990 Subprogram name: Get_lrnstr

1000 Parameters: none

1010 Return value: none

1
1
1
1020 ! Description: This subprogram loads a learnstring from the
1
1
1

1030 file "Lrn_strg" to the oscilloscope.
1040

1050 !

1060 SUB Get_lrnstr

1070 COM /Io/@Scope,@Path, Interface
1080 COM /Variables/Max_length

1090 DIM Setup$[40000]

1100 ENTER @Path,1;Setup$

1110 OUTPUT @Scope USING "#,-K";Setup$
1120 OUTPUT @Scope; " :RUN"

1130 SUBEND

1140 !

1150 !

7-40

Sample Programs
Irn_str.bas Sample Program

1160
rrrnd
rrrel

1170 !

1180 !

1190 ! Subprogram name: Close

1200 ! Parameters: none

1210 ! Return value: none

1220 ! Description: This routine resets the interface, and closes all I/
O paths

1230 !

1240 !

1250 !

1260 SUB Close
1270 COM /Io/@Scope,@Path,Interface

1290 RESET Interface
1300 ASSIGN @Path TO *
1310 SUBEND

1320 !

7-41

7-42

Acquire Commands

Acquire Commands

The ACQuire subsystem commands set up conditions for executing a
:DIGitize root level command to acquire waveform data. The commands in
this subsystem select the type of data, the number of averages, and the number
of data points.

These ACQuire commands and queries are implemented in the Infiniium
Oscilloscopes:

* AVERage

* AVERage:COUNt

» COMPIlete

* COMPlete:STATe

* INTerpolate

« MODE

» POINts:ANALog (analog memory depth)

» POINts:DIGital? (query digital memory depth)

* POINts:AUTO

» SEGMented:COUNt

» SEGMented:INDex

* SEGMented: TTAGs

» SRATe:ANALog (analog channel sampling rate)
» SRATe:DIGital (digital channel sampling rate)

* SRATe:ANALo0g:AUTO

» SRATe:DIGital:AUTO

8-2

Acquire Commands
AVERage

Command

Example

Query

Returned Format

Example

AVERage

:ACQuire:AVERage {{ON|1} | {OFF|0}}

The :ACQuire:AVERage command enables or disables averaging. When ON, the
oscilloscope acquires multiple data values for each time bucket, and averages them.
When OFF, averaging is disabled. To set the number of averages, use the
:ACQuire:AVERage:COUNt command described next.

Averaging is not available in PDETect mode.
The :MTESt:AVERage command performs the same function as this command.

This example turns averaging on.

10 OUTPUT 707;":ACQUIRE:AVERAGE ON"
20 END

:ACQuire:AVERage-?

The :ACQuire:AVERage? query returns the current setting for averaging.

[:ACQuire:AVERAGE] {1|0}<NL>

This example places the current settings for averaging into the string variable,
Setting$, then prints the contents of the variable to the computer's screen.

10 DIM Settings$[50]!Dimension variable
20 OUTPUT 707; " :ACQUIRE:AVERAGE?"

30 ENTER 707;Setting$

40 PRINT Setting$

50 END

Acquire Commands
AVERage:COUNt

Command

<count_value>

Example

Query

Returned Format

<value>

Example

AVERage:COUNt

:ACQuire:AVERage:COUNt <count_value>

The :ACQuire:[AVERage:]COUNt command sets the number of averages for the
waveforms. In the AVERage mode, the :ACQuire: AVERage:COUNt command
specifies the number of data values to be averaged for each time bucket before the
acquisition is considered complete for that time bucket.

The :MTESt:AVERage:COUNt command performs the same function as this
command.

An integer, 2 to 65,534, specifying the number of data values to be averaged.

This example specifies that 16 data values must be averaged for each time bucket to
be considered complete. The number of time buckets that must be complete for the
acquisition to be considered complete is specified by the :ACQuire:COMPIlete
command.

10 OUTPUT 707;":ACQUIRE:COUNT 16"
20 END

:ACQuire:COUNt?

The :ACQuire:COUNLt? query returns the currently selected count value.

[:ACQuire:COUNt] <value><NL>

An integer, 2 to 65,534, specifying the number of data values to be averaged.

This example checks the currently selected count value and places that value in the
string variable, Result$. The program then prints the contents of the variable to the
computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF”

20 OUTPUT 707; " :ACQUIRE:AVERAGE:COUNT?"
30 ENTER 707;Result

40 PRINT Result

50 END

Acquire Commands
COMPlete

Command

<percent>

Example

COMPlete

:ACQuire:COMPlete <percent>

The :ACQuire:COMPIlete command specifies how many of the data point storage bins
(time buckets) in the waveform record must contain a waveform sample before a
measurement will be made. For example, if the command :ACQuire:COMPlete 60
has been sent, 60% of the storage bins in the waveform record must contain a
waveform data sample before a measurement is made.

» If :ACQuire:AVERage is set to OFF, the oscilloscope only needs one value per
time bucket for that time bucket to be considered full.

» [If:ACQuire:AVERage is set to ON, each time bucket must have n hits for it to be
considered full, where n is the value set by :ACQuire:AVERage:COUNT.

Due to the nature of real time acquisition, 100% of the waveform record bins are filled
after each trigger event, and all of the previous data in the record is replaced by new
data when :ACQuire:AVERage is off. Hence, the complete mode really has no effect,
and the behavior of the oscilloscope is the same as when the completion criteria is set
to 100% (this is the same as in PDETect mode). When :ACQuire:AVERage is on, all
of the previous data in the record is replaced by new data.

The range of the :ACQuire:COMPIlete command is 0 to 100 and indicates the
percentage of time buckets that must be full before the acquisition is considered
complete. If the complete value is set to 100%, all time buckets must contain data
for the acquisition to be considered complete. If the complete value is set to 0, then
one acquisition cycle will take place. Completion is set by default setup or *RST to
90%. Autoscale changes it to 100%.

An integer, 0 to 100, representing the percentage of storage bins (time buckets) that
must be full before an acquisition is considered complete.

This example sets the completion criteria for the next acquisition to 90%.

10 OUTPUT 707;":ACQUIRE:COMPLETE 90"
20 END

8-5

Query

Returned Format

<percent>

Example

Acquire Commands
COMPlete

:ACQuire:COMPlete?

The :ACQuire:COMPIlete? query returns the completion criteria.

[:ACQuire:COMPlete] <percent><NL>

An integer, 0 to 100, representing the percentage of time buckets that must be full
before an acquisition is considered complete.

This example reads the completion criteria and places the result in the variable,
Percent. Then, it prints the content of the variable to the computer's screen.

10 OuTPUT 707;":SYSTEM:HEADER OFF”
20 OUTPUT 707; " :ACQUIRE:COMPLETE?"
30 ENTER 707;Percent

40 PRINT Percent

50 END

Acquire Commands
COMPlete:STATe

Command

Query

ON

OFF

COMPlete:STATe

:ACQuire:COMPlete:STATe {{ON | 1} | {OFF | 0}}

The :ACQuire:COMPIlete:STATe command specifies the state of the
:ACQuire:COMPIlete mode. This mode is used to make a tradeoff between how often
equivalent time waveforms are measured, and how much new data is included in the
waveform record when a measurement is made. This command has no effect when
the oscilloscope is in real time mode because the entire record is filled on every trigger.
However, in equivalent time mode, as few as 0 new data points will be placed in the
waveform record as the result of any given trigger event. You set the acquire mode
of the oscilloscope by using the :ACQuire:MODE command.

Use :ACQuire:COMPIlete:STATe when DIGitize is Not Performing

The :ACQuire:COMPIlete:STATe command is used only when the oscilloscope
is operating in equivalent time mode and a digitize operation is not being
performed. The :DIGitize command temporarily overrides the setting of this
mode and forces it to ON.

Turns the COMPIlete mode on. Then you can specify the completion percent.

When off, the oscilloscope makes measurements on waveforms after each acquisition
cycle, regardless of how complete they are. The waveform record is not cleared after
each measurement. Instead, previous data points will be replaced by new samples as
they are acquired.

:ACQuire:COMPlete:STATe?

The :ACQuire:COMPIete? query returns the state of the :ACQuire: COMPlete mode.

8-7

Acquire Commands
INTerpolate

Command

Query

Returned Format

INTerpolate

:ACQuire:INTerpolate {{ON | 1} | {OFF | 0}}

The :ACQuire:INTerpolate command turns the sin(x)/x interpolation filter on or off
when the oscilloscope is in one of the real time sampling modes.

:ACQuire:INTerpolate?

The :ACQuire:INTerpolate? query returns the current state of the sin(x)/x
interpolation filter control.

[:ACQuire:INTerpolate] {1 | O0}<NL>

Acquire Commands
MODE

Command

ETIMe

RTIMe

PDETect

HRESolution

MODE

:ACQuire:MODE {ETIMe | RTIMe | PDETect |
HRESolution | SEGHres | SEGMented | SEGPdetect}

The :ACQuire:MODE command sets the acquisition mode of the oscilloscope.
Sampling mode can be Real Time Normal, Real Time Peak Detect, or Real Time
High Resolution.

In Equivalent Time mode, the data record is acquired over multiple trigger events.

In Real Time Normal mode, the complete data record is acquired on a single trigger
event.

In Real Time Peak Detect mode, the oscilloscope acquires all of the waveform data
points during one trigger event. The data is acquired at the fastest sample rate of the
oscilloscope regardless of the horizontal scale setting. The sampling rate control then
shows the storage rate into the channel memory rather than the sampling rate. The
storage rate determines the number of data points per data region. From each data
region, four sample points are chosen to be displayed for each time column. The four
sample points chosen from each data region are:

 the minimum voltage value sample

* the maximum voltage value sample

» arandomly selected sample

» an equally spaced sample

The number of samples per data region is calculated using the equation:

Sampling Rate

Number of Samples =
Storage Rate

The remainder of the samples are not used for display purposes.

In Real Time High Resolution mode, the oscilloscope acquires all the waveform data
points during one trigger event and averages them thus reducing noise and improving
voltage resolution. The data is acquired at the fastest sample rate of the oscilloscope
regardless of the horizontal scale setting. The sampling rate control then shows the
storage rate into the channel memory rather than the sampling rate. The number of
samples that are averaged together per data region is calculated using the equation

Sampling Rate

Number of Samples =
Storage Rate

This number determines how many samples are averaged together to form the 16-bit
samples that are stored into the channel memories.

Acquire Commands
MODE

SEGMented In this sampling mode you can view waveform events that are separated by long
periods of time without capturing waveform events that are not of interest to you

SEGHres High Resolution Segmented acquisition mode.

SEGPdetect Peak detect segmented acquisition mode.

Example This example sets the acquisition mode to Real Time Normal.
10 OUTPUT 707;":ACQUIRE:MODE RTIME"
20 END

Query :ACQuire:MODE?

The :ACQuire:MODE? query returns the current acquisition sampling mode.

Returned Format [:ACQuire:MODE] {RTIMe | PDETect | HRESolution |
SEGMented} <NL>
Example This example places the current acquisition mode in the string variable, Mode$, then

prints the contents of the variable to the computer's screen.

10 DIM Mode$[50] !Dimension variable
20 OuTPUT 707; " :ACQUIRE:MODE?"

30 ENTER 707;Mode$

40 PRINT ModeS$

50 END

8-10

Acquire Commands
POINts:ANALog

Command

<points_value>

Table 8-1

POINts:ANALog

:ACQuire:POINts:ANALog {AUTO | <points_value>}

The :ACQuire:POINts:ANALog command sets the requested analog memory depth
foran acquisition. Before you download data from the oscilloscope to your computer,
always query the points value with the ;WAVeform:POINts:ANALog? query or
‘WAVeform:PREamble? query to determine the actual number of acquired points.

You can set the points value to AUTO, which allows the oscilloscope to select the
optimum memory depth and display update rate.
An integer representing the memory depth.

The range of points available for a channel depends on the oscilloscope settings of
sampling mode, sampling rate, and trigger sweep. The following tables show the
range of memory values for the different memory options.

500M Memory Option Installed

Sampling mode and sample rate Trigger Sweep

Single Auto or Triggered

Normal, Peak Detect, and High Resolution Modes: 4 channel mode | 16 to 512.5 Mpts 16 to 256.25 Mpts

Normal, Peak Detect, and High Resolution Modes: 2 channel mode | 16 t01025 Mpts 16 to 612.5 Mpts

Normal and High Resolution with Averaging 16 to 2,050,00

Equivalent Time Mode

16 to 262,144 kpts

8-11

Acquire Commands
POINts:ANALog

Table 8-2

200M Memory Option Installed

Sampling mode and sample rate

Trigger Sweep

Single Auto or Triggered

Normal, Peak Detect, and High Resolution Modes: 4 channel mode

16 to 205 Mpts

Normal, Peak Detect, and High Resolution Modes: 2 channel mode

16 to 410 Mpts

Normal and High Resolution with Averaging

16 to 2,050,00

Equivalent Time Mode

16 to 262,144 kpts

Table 8-3

100M Memory Option Installed

Sampling mode and sample rate

Trigger Sweep

Single Auto or Triggered

Normal, Peak Detect, and High Resolution Modes: 4 channel mode

16 to 102.5 Mpts

Normal, Peak Detect, and High Resolution Modes: 2 channel mode

16 to 205 Mpts

Normal and High Resolution with Averaging

16 to 2,050,00

Equivalent Time Mode

16 to 262,144 kpts

50M Memory Option Installed

Sampling mode and sample rate

Trigger Sweep

Single Auto or Triggered

Normal, Peak Detect, and High Resolution Modes: 4 channel mode

16 to 51.25 Mpts

Normal, Peak Detect, and High Resolution Modes: 2 channel mode

16 to 102.5 Mpts

Normal and High Resolution with Averaging

16 to 2,050,00

Equivalent Time Mode

16 to 262,144 kpts

8-12

Table 8-4

Acquire Commands
POINts:ANALog

20M Memory Option Installed

Sampling mode and sample rate

Trigger Sweep

Single Auto or Triggered

Normal, Peak Detect, and High Resolution Modes: 4 channel mode

16 to 20.5 Mpts

Normal, Peak Detect, and High Resolution Modes: 2 channel mode

16 to 41.0 Mpts

Normal and High Resolution with Averaging

16 to 2,050,00

Equivalent Time Mode

16 to 262,144 kpts

Table 8-5

10M Memory Option Installed

Sampling mode and sample rate

Trigger Sweep

Single Auto or Triggered

Normal, Peak Detect, and High Resolution Modes: 4 channel mode

16 to 10.25 Mpts

Normal, Peak Detect, and High Resolution Modes: 2 channel mode

16 to 20.5 Mpts

Normal and High Resolution with Averaging

16 to 2,050,00

Equivalent Time Mode

16 to 262,144 kpts

8-13

Example

Query

Returned Format

Example

See Also

Acquire Commands
POINts:ANALog

Interaction between :ACQuire:SRATe and :ACQuire:POINts

If you assign a sample rate value with :ACQuire:SRATe or a points value using
:ACQuire:POINTts the following interactions will occur. “Manual” means you are
setting a non-AUTO value for SRATe or POINTts.

SRATe POINts Result

AUTO Manual POINTts value takes precedence (sample rate is limited)

Manual AUTO SRATe value takes precedence (memory depth is limited)

Manual Manual SRATe value takes precedence (memory depth is limited)

This example sets the memory depth to 500 points.

10 OUTPUT 707;":ACQUIRE:POINTS 500"
20 END

:ACQuire:POINts:ANALOg?

The :ACQuire:POINts:ANALo0g? query returns the value of the analog memory depth
control.

[:ACQuire:POINts:ANALog] <points_value><NL>

This example checks the current setting for memory depth and places the result in the
variable, Length. Then the program prints the contents of the variable to the
computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF”

20 OUTPUT 707; " :ACQUIRE:POINTS:ANALOg?"
30 ENTER 707;Length

40 PRINT Length

50 END

‘WAVeform:DATA?

8-14

Acquire Commands
POINts:DIGital?

POINts:DIGital?

Query :ACQuire:POINts:DIGital

The :ACQuire:POINts:DIGital query returns the current memory depth for the digital
channels (MSO models only).

8-15

Acquire Commands
POINts:AUTO

Command

Example

Query

Returned Format

Example

See Also

POINts:AUTO

:ACQuire:POINts:AUTO {{ON | 1} |{OFF | 0}}

The :ACQuire:POINts:AUTO command enables (automatic) or disables (manual) the
automatic memory depth selection control. When enabled, the oscilloscope chooses
a memory depth that optimizes the amount of waveform data and the display update
rate. When disabled, you can select the amount of memory using the
:ACQuire:POINts command.

This example sets the automatic memory depth control to off.

10 OUTPUT 707;":ACQUIRE:POINTS:AUTO OFF"
20 END

:ACQuire:POINts:AUTO?

The :ACQuire:POINts:AUTO? query returns the automatic memory depth control
state.

[:ACQuire:POINts:AUTO] {1 | O}<NL>

This example checks the current setting for automatic memory depth control and
places the result in the variable, State. Then the program prints the contents of the
variable to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF”

20 OUTPUT 707; " :ACQUIRE:POINTS:AUTO?"

30 ENTER 707;State

40 PRINT State

50 END

‘WAVeform:DATA?

8-16

Acquire Commands
SEGMented:COUNt

Command

<#sements>

Example

Query

Returned Format

Example

SEGMented:COUNTt

:ACQuire:SEGMented:COUNt <#segments>

The :ACQuire:SEGMented: COUNt command sets the number of segments to acquire
in the segmented memory mode.

An integer representing the number of segments to acquire.

This example sets the segmented memory count control to 1000.

10 OUTPUT 707;":ACQUIRE:SEGMented:COUNt 1000"
20 END

:ACQuire: SEGMented:COUNt?

The :ACQuire:SEGMented:COUNT? query returns the number of segments control
value.

[:ACQuire:SEGMented:COUNt] <#segments><NL>

This example checks the current setting for segmented memory count control and
places the result in the variable, Segments. Then the program prints the contents of
the variable to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF”

20 OUTPUT 707; " :ACQUIRE:SEGMents:COUNt?"
30 ENTER 707;Segments

40 PRINT Segments

50 END

8-17

Acquire Commands
SEGMented:INDex

Command

<index#>

Example

Query

Returned Format

Example

SEGMented:INDex

:ACQuire:SEGMented: INDex <index#>

The :ACQuire:SEGMented:INDex command sets the index number for the segment
that you want to display on screen in the segmented memory mode. If an index value
larger than the total number of acquired segments is sent, an error occurs indicating
that the data is out of range and the segment index is set to the maximum segment
number.

An integer representing the index number of the segment that you want to display.

This example sets the segmented memory index number control to 1000.

10 OUTPUT 707;":ACQUIRE:SEGMented:INDex 1000"
20 END

:ACQuire:SEGMented: INDex?

The :ACQuire:SEGMented:INDex? query returns the segmented memory index
number control value.

[:ACQuire:SEGMented: INDex] <index#><NL>

This example checks the current setting for sesgmented memory index number control
and places the result in the variable, Index. Then the program prints the contents of
the variable to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF”

20 OUTPUT 707; " :ACQUIRE:SEGMents:INDex?"
30 ENTER 707;Index

40 PRINT Index

50 END

8-18

Acquire Commands
SEGMented: TTAGs

Command

Example

Query

Returned Format

Example

SEGMented: TTAGS

:ACQuire:SEGMented: TTAGs {{ON | 1} | {OFF | 0}}

The :ACQuire:SEGMented: TTAGs command turns the time tags feature on or off for
the segmented memory sampling mode.

This example turns the time tags on for segmented memory.

10 OUTPUT 707;":ACQUIRE:SEGMented:TTAGs ON"
20 END

:ACQuire:SEGMented: TTAGS?

The :ACQuire:SEGMented: TTAGS? query returns the segmented memory time tags
control value.

[:ACQuire:SEGMented:TTAGs] {1 | 0}<NL>

This example checks the current setting for segmented memory time tags control and
places the result in the variable, timetags. Then the program prints the contents of
the variable to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF”

20 OUTPUT 707; " :ACQUIRE:SEGMents:TTAGs?"
30 ENTER 707;timetags

40 PRINT timetags

50 END

8-19

Acquire Commands

SRATe:ANALog (Analog Sample RATe)

Command
AUTO
MAX
<rate>
Example

SRATe:ANALog (Analog Sample RATe)

:ACQuire:SRATe:ANALog {AUTO | MAX | <rate>}

The :ACQuire:SRATe:ANALog command sets the analog acquisition sampling rate.

The AUTO rate allows the oscilloscope to select a sample rate that best accommodates
the selected memory depth and horizontal scale.

The MAX rate enables the oscilloscope to select maximum available sample rate.

A real number representing the sample rate. You can send any value, but the value is
rounded to the next fastest sample rate. For a list of available sample rate values see
see “SRATe Sample Rate Tables” on page 8-22.

Interaction between :ACQuire:SRATe:ANALog and
:ACQuire:POINts:ANALog

If you assign a sample rate value with :ACQuire:SRATe:ANALog or a points value
using :ACQuire:POINts:ANALog the following interactions will occur. “Manual”
means you are setting a non-AUTO value for SRATe or POINTts.

SRATe POINts Result

AUTO Manual POINTts value takes precedence (sample rate is limited)
Manual AUTO SRATe value takes precedence (memory depth is limited)
Manual Manual SRATe value takes precedence (memory depth is limited)

This example sets the sample rate to 250 MSa/s.
10 OUTPUT 707;":ACQUIRE:SRATE:ANALog 250E+6"

20 END

8-20

Query

Returned Format

Example

Acquire Commands
SRATe:ANALog (Analog Sample RATe)

:ACQuire: SRATe: ANALOQ?

The :ACQuire:SRATe:ANALo0g? query returns the current analog acquisition sample
rate.

[:ACQuire:SRATe:ANALog] {<rate>}<NL>

This example places the current sample rate in the string variable, Sample$, then prints
the contents of the variable to the computer's screen.

10 DIM Sample$[50]!Dimension variable
20 OUTPUT 707; " :ACQUIRE:SRATE:ANALoOg?"
30 ENTER 707;Sample$

40 PRINT Sample$

50 END

8-21

Acquire Commands
SRATe Sample Rate Tables

SRATe Sample Rate Tables

The following tables show the range of point values.

Table 8-6

Sample Rate Values (in Sa/s)
Normal Sampling Mode

10 20 25 40 50 100 200 250 400 500 1K 2K
10K 20K 25K 40K 50K 100K 200K 250K 400K 500K 1M 2M
10M 20M 25M 40M 50M 100M 125M 200M 250M 400M 500M 1G
4G 5G 10G 20G

25K 4K
2.5M 4AM
1.25G 2G

5K
5M
2.5G

8-22

Acquire Commands
SRATe:DIGital (Digital Channels Sample RATe)

Command

AUTO

MAX

<rate>

SRATe:DIGital (Digital Channels Sample RATe)

:ACQuire:SRATe:DIGital {AUTO | MAX | <rate>}

The :ACQuire:SRATe:DIGital command sets the digital acquisition sampling rate.

The AUTO rate allows the oscilloscope to select a sample rate that best accommodates
the selected memory depth and horizontal scale.

The MAX rate enables the oscilloscope to select maximum available sample rate.

A real number representing the digital sample rate. You can send any value, but the
value is rounded to the next fastest sample rate.

Interaction between :ACQuire:SRATe:DIGital and
:ACQuire:POINts:DIGital?

If you assign a sample rate value with :ACQuire:SRATe:DIGital, the digital memory
depth is automatically adjusted and can be seen by using the query
:ACQuire:POINts:DIGital

8-23

Query

Returned Format

Example

Acquire Commands
SRATe:DIGital (Digital Channels Sample RATe)

:ACQuire:SRATe:DIGital?

The :ACQuire:SRATe:DIGital? query returns the current digital acquisition sample

rate.

[:ACQuire:SRATe:DIGital] {<rate>}<NL>

This example places the current digital channel sample rate in the string variable,
Sample$, then prints the contents of the variable to the computer's screen.

10
20
30
40
50

DIM Sample$[50] !Dimension variable
OUTPUT 707; " :ACQUIRE:SRATE:DIGital?"
ENTER 707; Sample$

PRINT Sample$

END

8-24

Acquire Commands
SRATe:ANALog:AUTO

Command

Example

Query

Returned Format

Example

SRATe:ANALog:AUTO

:ACQuire:SRATe:ANALog:AUTO {{ON | 1} | {OFF | 0}}

The :ACQuire:SRATe:ANALo0g:AUTO command enables (ON) or disables (OFF)
the automatic analog sampling rate selection control. On the oscilloscope front-panel
interface, ON is equivalent to Automatic and OFF is equivalent to Manual.

This example changes the sampling rate to manual.

10 OUTPUT 707; " :ACQUIRE:SRATE:ANALog:AUTO OFF"
20 END

:ACQuire: SRATe: ANALog:AUTO?

The:ACQuire:SRATe:ANALo0g:AUTO? query returns the current acquisition sample
rate.

[:ACQuire:SRATe:ANALog:AUTO] {1 | 0}<NL>

Thisexample places the current analog sample rate in the variable, Sample, then prints
the contents of the variable to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF”

20 OUTPUT 707;":ACQUIRE:SRATE:ANALog:AUTO?"
30 ENTER 707;Sample

40 PRINT Sample

50 END

8-25

Acquire Commands
SRATe:DIGital:AUTO

Command

Example

Query

Returned Format

Example

SRATe:DIGital:AUTO

:ACQuire:SRATe:DIGital:AUTO {{ON | 1} | {OFF | 0}}

The :ACQuire:SRATe:DIGital:AUTO command enables (ON) or disables (OFF) the
automatic digital channel sampling rate selection control.

This example changes the digital channel sampling rate to manual.

10 OUTPUT 707;":ACQUIRE:SRATE:DIGital:AUTO OFF"
20 END

:ACQuire:SRATe:DIGital :AUTO?

The :ACQuire:SRATe:DIGital: AUTO? query returns the current digital channel
acquisition sample rate.

[:ACQuire:SRATe:DIGital:AUTO] {1 | O0}<NL>

This example places the current digital channel sample rate in the variable, Sample,
then prints the contents of the variable to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF”

20 OUTPUT 707;":ACQUIRE:SRATE:DIGital:AUTO?"
30 ENTER 707;Sample

40 PRINT Sample

50 END

8-26

Bus Commands

Bus Commands

| The BUS commands only apply to the MSO Oscilloscopes.

The :BUS modes and commands described in this chapter include:

« BL.TYPE
e BIT<M>
e BITS

e CLEar

e CLOCKk
» DISPlay
* LABel

* READout

9-2

Bus Commands
B1:TYPE

Command

<protocol>

BL:TYPE

:BUS:B1:TYPE <protocol>

This BUS command only applies to oscilloscopes with the serial data

analysis option installed.

Example

Query

Return format

The :BUS:B1:TYPE command sets the type of protocol being analyzed.

{CAN | DVI | FIBRechannel | FLEXray | GEN8B10B | GENeric | HOTLink | IIC |
INFiniband | MIPI | MOST | PClexpress | SAS | SATA | SPI | XAUI}

This example sets the protocol type to FLEXray.

10 Output 707;”BUS:Bl:TYPE FLEXRAY”
20 END

:BUS:Bl1:TYPE?

The :BUS:BL:TYPE? query returns the name of the protocol being used.

[:BUS:B1l:TYPE] <protocol><NL>

9-3

Bus Commands
BIT<M>

Command
<M>
<N>
Example
Query

Re